A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Golub, Y.

Paper Title Page
FPAP011 New Vortices in Axisymmetric Beams in Inhomogeneous Magnetic Field
 
  • Y. Golub
    MRTI RAS, Moscow
 
  We analyzed localized vortices in non-neutral inhomogeneous by density and velocity electron beams propagating in vacuum along the inhomogeneous external magnetic field. These vortices distinguish from vortices, which used in Golub Yu.Ya. et al. and Golub Yu.Ya. because of inhomogeneous external magnetic field. Also new types of vortex are obtained by new solution method of nonlinear equations.** The new method is development of a method described in Golub Yu.Ya. That method distinguish from standard Larichev-Reznik or Reznik method, which used in Golub Yu.Ya. et al. It has been found new expression for electric field potential of vortex in a wave frame. The expression is axisymmetric in a wave frame. New vortices are new solitons in the inhomogeneous external magnetic field.

*Golub Yu.Ya. et al., in Nonlinear world: IV Intern. Workshop on Nonlin. and Turbul. Proc. in Phys., (ed. by V.G. Bar'yakhtar et al.) World Scientific Publishing Co. Pte. Ltd., Singapore, 1990, vol. 2, p. 857. **Golub Yu.Ya., Proceedings of EPAC 2002, Paris, France, p. 1253.

 
FPAP012 The Effect of Inhomogeneous Magnetic Field on Budker-Chirikov Instability
 
  • Y. Golub
    MRTI RAS, Moscow
 
  The two-beams electron - ion system consists of a nonrelativistic ion beam propagating co-axially with a high-current relativistic electron beam in a longitudinal inhomogeneous magnetic field. The effect of the longitudinal inhomogeneous magnetic field on instability Budker-Chirikov (BCI) in the system is investigated by the method of a numerical simulation in terms of the kinetic description of both beams. The investigations are development of investigations in*,**. Is shown, when the inhomogeneity magnetic field results in the decreasing of an increment of instability Budker-Chirikov and the increasing of length of propagation of a electron beam. Also is shown, when take place the opposite result.

*Yu.Ya. Golub, N.E.Rozanov, Nuclear Instruments and Methods in Physics Research, A358 (1995) 479. **Yu.Ya. Golub, Proceedings of EPAC 2002, Paris, France, p. 1497.