A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Friedland, L.

Paper Title Page
TPAE066 Robust Autoresonant Excitation in the Plasma Beat-Wave Accelerator: A Theoretical Study 3688
 
  • A.E. Charman, R.R. Lindberg, J.S. Wurtele
    UCB, Berkeley, California
  • L. Friedland
    The Hebrew University of Jerusalem, The Racah Institute of Physics, Jerusalem
 
  Funding: Division of High Energy Physics, U.S. Department of Energy, DARPA, U.S. Department of Defense.

A modified version of the Plasma Beat-Wave Accelerator scheme is introduced and analyzed, which is based on autoresonant phase-locking of the nonlinear Langmuir wave to the slowly chirped beat frequency of the driving lasers via adiabatic passage through resonance. This new scheme is designed to overcome some of the limitations of previous approaches, namely relativistic detuning and nonlinear modulations in the driven Langmuir wave amplitude, and sensitivity to frequency mismatch from density fluctuations. As in previous schemes, instabilities of the ionic background ultimately limit the useful interaction time, but nevertheless peak electric fields approaching the wave-breaking limit seem readily attainable. Compared to traditional approaches, the autoresonant scheme achieves larger accelerating electric fields for given laser intensity; the plasma wave excitation is more robust to variations in plasma density; it is largely insensitive to the choice of chirp rate, provided that chirping is sufficiently slow; and the quality and uniformity of the resulting plasma wave and its suitability for accelerator applications may be superior.