A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Feher, SF.

Paper Title Page
MPPT009 HTS Power Leads for the BTeV Interaction Region 1147
 
  • SF. Feher, R. H. Carcagno, D.F. Orris, Y.M.P. Pischalnikov, R. Rabehl, C. Sylvester, M. Tartaglia, J. Tompkins
    Fermilab, Batavia, Illinois
 
  Funding: DOE

A new Interaction Region for the BTEV experiment is planned to be built soon at Fermilab. This IR will require new superconducting quadrupole magnets and many additional power circuits for their operation. The new "low beta" quadupole magnet design is based upon the Fermilab LHC quadrupole design, and will operate at 9.56 kA in 4.5 K liquid helium. The use of conventional power leads for these circuits would require substantially more helium for cooling than is available from the cryogenic plant, which is already operating close to its limit. To decrease the heat load and helium cooling demands, the use of HTS power leads is necessary. Fermilab is in the process of procuring HTS leads for this new interaction region. Several 6 kA HTS leads produced by American Superconductor Corporation have been tested at over-current conditions. Based on the test results, design requirements are being developed for procuring the HTS current leads. This paper summarizes the test results and describes the design requirements for the 9.65 kA HTS power leads.

 
MPPT044 The Construction of the Low-Beta Triplets for the LHC 2798
 
  • R. Ostojic, M. Karppinen, T.M. Taylor, W.  Venturini Delsolaro
    CERN, Geneva
  • R. Bossert, J. DiMarco, SF. Feher, J.S. Kerby, M.J. Lamm, T.H. Nicol, A. Nobrega, T.M. Page, T. Peterson, R. Rabehl, P. Schlabach, J. Strait, C. Sylvester, M. Tartaglia, G. Velev
    Fermilab, Batavia, Illinois
  • N. Kimura, T. Nakamoto, T. Ogitsu, N. Ohuchi, t.s. Shintomi, K. Tsuchiya, A. Yamamoto
    KEK, Ibaraki
 
  The performance of the LHC depends critically on the low-beta triplets, located on either side of the four interaction points. Each triplet consists of four superconducting quadrupole magnets, which must operate reliably at up to 215 T/m, sustain extremely high heat loads and have an excellent field quality. A collaboration of CERN, Fermilab and KEK was set up in 1996 to design and build the triplet systems, and after nine years of joint effort the production will be completed in 2005. We retrace the main events of the project and present the design features and performance of the low-beta quadrupoles, built by KEK and Fermilab, as well as of other vital elements of the triplet. The experience in assembly of the first triplet at CERN and plans for tunnel installation and commissioning in the LHC are also presented. Apart from the excellent technical results, the construction of the LHC low-beta triplets has been a highly enriching experience combining harmoniously the different competences and approaches to engineering in a style reminiscent of physics experiment collaborations, and rarely before achieved in accelerator building.  
FPAT060 An FPGA-Based Quench Detection and Protection System for Superconducting Accelerator Magnets 3502
 
  • R. H. Carcagno, SF. Feher, M.J. Lamm, A. Makulski, R. Nehring, D.F. Orris, Y.M.P. Pischalnikov, M. Tartaglia
    Fermilab, Batavia, Illinois
 
  A new quench detection and protection system for superconducting accelerator magnets was developed at the Fermilab's Magnet Test Facility (MTF). This system is based on a Field-Programmable Gate Array (FPGA) module, and it is made of mostly commerically available, integrated hardware and software components. It provides most of the functionality of our existing VME-based quench detection and protection system, but in addition the new system is easily scalable to protect multiple magnets powered independently and has a more powerful user interface and analysis tools. First applications of the new system will be for testing corrector coil packages. In this paper we describe the new system and present results of testing LHC Interaction Region Quadrupole (IRQ) correctors.