A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Facco, A.

Paper Title Page
TPPT061 Prototyping of a 352 MHz, beta=0.17 Superconducting Coaxial Half Wave Resonator 3547
 
  • A. Facco, F. Scarpa, D. Zenere
    INFN/LNL, Legnaro, Padova
  • V. Zviagintsev
    TRIUMF, Vancouver
 
  We have designed a 352 MHz superconducting coaxial half wave resonator with beta=0.17. The cavity has a mechanical design similar to the LNL beta=0.31 one developed in 2004. It is very compact (232 mm real-estate length) and it is equipped with a side tuner not exposed to liquid helium, to make it insensitive to pressure fluctuations. Operation is foreseen at 4.2 K. The beta=0.17 cavity fills the gap from 5 to ~25 MeV between the LNL proton RFQ, under construction, and and the existing beta=0.31 half wave resonator. This allows a 5¸100 MeV proton linac working at 352 MHz with 2 types of coaxial HWR cavities with large velocity acceptance, thus able to accelerate also other ion species (e.g. deuterons). A similar scheme was previously proposed for Spoke resonators; the aim of the HWR choice is compactness and cost reduction. The beta=0.17 cavity is presently under construction in the SPES R&D program at LNL; first test results are expected by the end of 2005.  
FPAE040 First Operation of PIAVE, the Heavy Ion Injector Based on Superconducting RFQ's 2621
 
  • G. Bisoffi, G. Bassato, A. Battistella, G.P. Bezzon, l. Boscagli, A. Calore, S. Canella, D. Carlucci, F. Chiurlotto, M. Comunian, M. De Lazzari, A. Facco, E. Fagotti, A. Lombardi, P. Modanese, M.F. Moisio, A. Pisent, M. Poggi, A.M. Porcellato, S. Stark
    INFN/LNL, Legnaro, Padova
 
  The Positive Ion Accelerator for low-Velocity Ions (PIAVE), based on superconducting RFQ's (SRFQ's), has been completed in fall 2004 with the first acceleration of beams from the ECR ion source. Superconducting RFQ's were used, for the first time, for beam acceleration on a user-oriented accelerator complex. A general status of the injector performances is given: it includes, besides the SRFQ's, eight superconducting (SC) QWR's and three bunchers; the beam is received from an ECR source on a HV platform and is delivered, through the SC accelerator ALPI, to nuclear physics experimental apparatuses. The paper emphasizes, in particular, the technological challenges related to the operation of the SC cavities, the cryogenics, control, diagnostics and vacuum systems.