A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Elleaume, P.

Paper Title Page
RPAE028 Lattice Upgrade Options for the ESRF Storage Ring 2047
 
  • Y. Papaphilippou, P. Elleaume, L. Farvacque, A. Ropert
    ESRF, Grenoble
 
  Several scenarios of lattice upgrade for the ESRF storage ring are under study. In order to minimise the cost, their design is based on the length constraints of the existing tunnel with the ID beamlines kept in place. The goal is to shrink the emittance in order to increase the undulator brilliance. The two main options are a double bend achromat structure with non-uniform field dipoles and a triple bend achromat lattice. The two scenarios are detailed and compared with respect to their linear optics solutions, correction of chromatic effects and non-linear dynamics. An attempt to reveal the horizontal effective emittance dependence on important design parameters, such as optics functions maxima, chromaticity and dynamic aperture, is also undertaken. Technological challenges concerning magnet design with small physical aperture in a reduced space are also addressed.  
RPAE029 Analytical Considerations for Reducing the Effective Emittance with Variable Dipole Field Strengths 2086
 
  • Y. Papaphilippou, P. Elleaume
    ESRF, Grenoble
 
  The basic optics design scope in lepton rings is to match the sections in either side of the bending magnets in order to minimise the equilibrium emittance. A further important emittance reduction can be achieved by incorporating dipoles for which the deflecting field varies along the electron beam path in the magnet. The figure of merit for such lattices when used in a synchrotron light source is the minimization of the so-called effective emittance. The effective emittance is computed in the middle of the undulator straight section as the product of the rms size and divergence and therefore includes contributions from the betatron emittance and from the electron energy spread. In this paper, analytical formulas are obtained for the minimum betatron and effective emittance in arbitrary dipole fields and the associated optics function at the dipole entrance. Examples are given for specific dipole field functions and their properties with respect to the effective emittance minimisation. Finally, the effective emittance is parameterised with respect to standard cell optics properties, such as the phase advance, the maximum beta and dispersion functions and the focusing element strengths.