A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Doose, C.

Paper Title Page
MPPT036 R&D of Short-Period NbTi and Nb3Sn Superconducting Undulators for the APS 2419
 
  • S.H. Kim, C. Doose, R. Kustom, E.R. Moog, I. Vasserman
    ANL, Argonne, Illinois
 
  Funding: Work supported by the U.S. Department of Energy under Contract No. W-31-109-ENG-38.

A superconducting undulator (SCU) with a period of 14.5 mm is under development at the Advanced Photon Source (APS). The undulator is designed to achieve a peak field on the beam axis of 0.8 T with an 8 mm pole gap and an average current density of 1 kA/mm2 in the NbTi coil. A 22-period half-section of a SCU has been fabricated. The SCU half-section was charged up to near the average critical current density jc of 1.4 kA/mm2, and the stability margin was measured by imposing external heat fluxes on the coil at 4.2 K in pool boiling LHe. The magnetic fields along the midplane of the SCU were measured using a Hall-probe field-mapping unit installed in a vertical dewar. The first test of a Nb3Sn short-section SCU reached an average current density of 1.45 kA/mm2, slightly higher than the jc for the NbTi SCU.

 
MPPT083 Radiation Damage to Advanced Photon Source Undulators 4126
 
  • S. Sasaki, C. Doose, E.R. Moog, M. Petra, I. Vasserman
    ANL, Argonne, Illinois
  • N.V. Mokhov
    Fermilab, Batavia, Illinois
 
  Funding: Supported by the U.S. DOE Office of Science under Contract No. W-31-109-ENG-38.

Radiation-induced magnetic field strength losses are seen in undulator permanent magnets in the two sectors with small-aperture (5 mm) vacuum chambers. Initially, simple retuning of the affected undulators could restore them to full operation. As the damage has accumulated, however, it has become necessary to disassemble the magnetic arrays and either replace magnet blocks or remagnetize and reinstall magnet blocks. Some of the damaged magnet blocks have been studied, and the demagnetization was found to be confined to a limited volume at the surface close to the electron beam. Models for the magnetic damage were calculated using RADIA* and were adjusted to reproduce the measurements. Results suggest that a small volume at the surface has acquired a weak magnetization in the opposite direction. Small magnet samples provided by NEOMAX and Shin-Etsu are being placed in the storage ring tunnel for irradiation exposure testing. Simulations of the radiation environment at the undulators have been performed.

*O. Chubar, P. Elleaume, J. Chavanne, J. Synchrotron Radiat. 5, 481 (1998).