A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Dong, H.

Paper Title Page
RPAT071 Digital Beam Position Monitor for the Happex Experiment 3841
 
  • S.R. Kauffman, H. Dong, A. Freyberger, L. Kaufman, J. Musson
    Jefferson Lab, Newport News, Virginia
 
  Funding: This work was supported by DOE contract No. DE-AC05-84ER40150.

The proposed HAPPEX experiment at CEBAF employs a three cavity monitor system for high-precision (1 mm), high-bandwidth (100 kHz) position measurements. This is performed using a cavity triplet consisting of two TM110-mode cavities (one each for X and Y planes) combined with a conventional TM-010-mode cavity for a phase and magnitude reference. Traditional systems have used the TM010 cavity output to directly down convert the BPM cavity signals to base band. The Multi-channel HAPPEX digital receiver simultaneously I/Q samples each cavity and extracts position using a CORDIC algorithm. The hardware design consists of a digital receiver daughter board and digital processor motherboard that resides in a VXI crate. The daughter board down converts 1.497 GHz signals from the TM010 cavity and X and Y signals from the TM110 cavities to 4 MHz, and extracts the quadrature digital signals. The motherboard processes this data and computes beam intensity and X-Y positions with a resolution of one mm, 100 kHz output bandwidth, and overall latency of ten microseconds. The results are available in both analog and digital format.