A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Chen, C.R.

Paper Title Page
WPAE002 Safety Management for the Cryogenic System of Superconducting RF System 832
 
  • S.-P. Kao, C.R. Chen, F.-Z. Hsiao, J.P. Wang
    NSRRC, Hsinchu
 
  The installation of the helium cryogenic system for the superconducting RF cavity and magnet were finished in the National Synchrotron Radiation Research Center (NSRRC) at the end of October 2002. The first phase of this program will be commissioned at the end of 2004. This was the first large scale cryogenic system in Taiwan. The major hazards to personnel are cryogenic burn and oxygen deficient. To avoid the injury of the operators and meet the requirements of local laws and regulations, some safety measures must be adopted. This paper will illustrate the methods of risk evaluation and the safety control programs taken at NSRRC to avoid and reduce the hazards from the cryogenic system of the superconducting RF cavity and magnet system.  
FPAT055 The Radiation Safety Interlock System for Top-Up Mode Operation at NSRRC 3328
 
  • C.R. Chen, F.D. Chang, S.-P. Kao, Joseph. Liu, R.J. Sheu, J.P. Wang
    NSRRC, Hsinchu
 
  The radiation safety interlock systems of NSRRC have been operated for more than a decade. Some modification actions have been implemented in the past to perfect the safe operation. The machine and its interlock system were originally designed to operate at the decay mode. Recently some improvement programs to make the machine injection from original decay mode to top-up mode at NSRRC has initiated. For users at experimental area the radiation dose resulted from top-up re-fill injections where safety shutters of beam-lines are opened will dominate. In addition to radiation safety action plans such as upgrading the shielding, enlarging the exclusion zones and improving the injection efficiency, the interlock system for top-up operation is the most important to make sure that injection efficiency is acceptable. To ensure the personnel radiation safety during the top-up mode, the safety interlock upgrade and action plans will be implemented. This paper will summarize the original design logic of the safety interlock system. Historical modification actions for this system will be mentioned. New design logic to ensure radiation safety for top-up mode operation will be discussed.