A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Celata, C.M.

Paper Title Page
ROAB003 Highly Compressed Ion Beams for High Energy Density Science 339
 
  • A. Friedman, J.J. Barnard, D. A. Callahan, G.J. Caporaso, D.P. Grote, R.W. Lee, S.D. Nelson, M. Tabak
    LLNL, Livermore, California
  • R.J. Briggs
    SAIC, Alamo, California
  • C.M. Celata, A. Faltens, E. Henestroza, E. P. Lee, M. Leitner, B. G. Logan, G. Penn, L. R. Reginato, A. Sessler, J.W.  Staples, W. Waldron, J.S. Wurtele, S. Yu
    LBNL, Berkeley, California
  • R.C. Davidson, L. Grisham, I. Kaganovich
    PPPL, Princeton, New Jersey
  • C. L. Olson, T. Renk
    Sandia National Laboratories, Albuquerque, New Mexico
  • D. Rose, C.H. Thoma, D.R. Welch
    ATK-MR, Albuquerque, New Mexico
 
  Funding: Work performed under auspices of USDOE by U. of CA LLNL & LBNL, PPPL, and SNL, under Contract Nos. W-7405-Eng-48, DE-AC03-76SF00098, DE-AC02-76CH03073, and DE-AC04-94AL85000, and by MRC and SAIC.

The Heavy Ion Fusion Virtual National Laboratory (HIF-VNL) is developing the intense ion beams needed to drive matter to the High Energy Density (HED) regimes required for Inertial Fusion Energy (IFE) and other applications. An interim goal is a facility for Warm Dense Matter (WDM) studies, wherein a target is heated volumetrically without being shocked, so that well-defined states of matter at 1 to 10 eV are generated within a diagnosable region. In the approach we are pursuing, low to medium mass ions with energies just above the Bragg peak are directed onto thin target "foils," which may in fact be foams or "steel wool" with mean densities 1% to 100% of solid. This approach complements that being pursued at GSI, wherein high-energy ion beams deposit a small fraction of their energy in a cylindrical target. We present the requirements for warm dense matter experiments, and describe suitable accelerator concepts, including novel broadband traveling wave pulse-line, drift-tube linac, RF, and single-gap approaches. We show how neutralized drift compression and final focus optics tolerant of large velocity spread can generate the necessarily compact focal spots in space and time.

 
ROPB002 Experiments Studying Desorbed Gas and Electron Clouds in Ion Accelerators 194
 
  • A.W. Molvik, J.J. Barnard, R.H. Cohen, A. Friedman, M. Kireeff Covo, S.M. Lund
    LLNL, Livermore, California
  • D. Baca, F.M. Bieniosek, C.M. Celata, P.A. Seidl, J.-L. Vay, W. Waldron
    LBNL, Berkeley, California
  • J.L. Vujic
    UCB, Berkeley, California
 
  Funding: This work was performed under the auspices of the U.S. Department of Energy by University of California, LLNL under contract No. W-7405-Eng-48, and by LBNL under Contract DE-AC03-76F00098.

Electron clouds and gas pressure rise limit the performance of many major accelerator rings. We are studying these issues experimentally with ~1 MeV heavy-ion beams, coordinated with significant efforts in self-consistent simulation and theory.* The experiments use multiple diagnostics, within and between quadrupole magnets, to measure the sources and accumulation of electrons and gas. In support of these studies, we have measured gas desorption and electron emission coefficients for potassium ions impinging on stainless steel targets at angles near grazing incidence.** Our goal is to measure the electron particle balance for each source – ionization of gas, emission from beam tubes, and emission from an end wall – determine the electron effects on the ion beam and apply the increased understanding to mitigation.

*J-L. Vay, Invited paper, session TICP; R. H. Cohen et al., PRST-AB 7, 124201 (2004). **M. Kireeff Covo, this conference; A. W. Molvik et al., PRST-AB 7, 093202 (2004).

 
FPAP033 Beam Energy Scaling of Ion-Induced Electron Yield from K+ Ions Impact on Stainless Steel Surfaces 2287
 
  • M. Kireeff Covo, J.J. Barnard, R.H. Cohen, A. Friedman, D.P. Grote, S.M. Lund, A.W. Molvik, G.A. Westenskow
    LLNL, Livermore, California
  • D. Baca, F.M. Bieniosek, C.M. Celata, J.W. Kwan, P.A. Seidl, J.-L. Vay
    LBNL, Berkeley, California
  • J.L. Vujic
    UCB, Berkeley, California
 
  Funding: This work was performed under the auspices of the U.S. Department of Energy by University of California, LLNL under contract No. W-7405-Eng-48, and by LBNL under Contract DE-AC03-76F00098.

The cost of accelerators for heavy-ion inertial fusion energy (HIF) can be reduced by using the smallest possible clearance between the beam and the wall from the beamline. This increases beam loss to the walls, generating ion-induced electrons that could be trapped by beam space charge potential into an "electron cloud," which can cause degradation or loss of the ion beam. In order to understand the physical mechanism of production of ion-induced electrons we have measured impact of K+ ions with energies up to 400 KeV on stainless steel surfaces near grazing incidence, using the ion source test stand (STS-500) at LLNL. The electron yield will be discussed and compared with experimental measurements from 1 MeV K+ ions in the High-Current Experiment at LBNL.*

*A.W. Molvik et al., PRST-AB 7, 093202 (2004).

 
FPAT026 The Dynamic Aperture of an Electrostatic Quadrupole Lattice 1946
 
  • C.M. Celata, F.M. Bieniosek, P.A. Seidl
    LBNL, Berkeley, California
  • A. Friedman, D.P. Grote
    LLNL, Livermore, California
  • L.R. Prost
    Fermilab, Batavia, Illinois
 
  Funding: Work supported by the U.S. DOE, under contract numbers DE-AC03-76SF00098 and W-7405-Eng-48.

In heavy-ion-driven inertial fusion accelerator concepts, dynamic aperture is important to the cost of the accelerator, most especially for designs which envision multibeam linacs, where extra clearance for each beam greatly enlarges the transverse scale of the machine. In many designs the low-energy end of such an accelerator uses electrostatic quadrupole focusing. The dynamic aperture of such a lattice has been investigated for intense, space-charge-dominated ion beams using the 2-D transverse slice version of the 3-D particle-in-cell simulation code WARP. The representation of the focusing field used is a 3-D solution of the Laplace equation for the biased focusing elements, as opposed to previous calculations which used a less-accurate multipole approximation. 80% radial filling of the aperture is found to be possible. Results from the simulations, as well as corroborating data from the High Current Experiment at LBNL, will be presented.