A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Casey, J.A.

Paper Title Page
WPAT047 Solid-State 2MW Klystron Power Control System 2950
 
  • M.A. Kempkes, J.A. Casey, M.P.J. Gaudreau, T.H. Hawkey, I. Roth
    Diversified Technologies, Inc., Bedford
 
  Under an SBIR effort for the DOE, Diversified Technologies, Inc. designed, built, and installed a solid state power control system for the Advanced Light Source klystrons at Argonne National Laboratory (ANL). This system consists of two major elements – a 100 kV, 20 A CW solid state series switch, and a solid state voltage regulator for the mod-anode of the klystron. The series switch replaces the existing mercury ignitron crowbar, eliminating these environmentally hazardous components while providing enhanced arc protection and faster return to transmit. The mod-anode voltage regulator uses series IGBTs, operating in the linear regime, to provide highly rapid and accurate control of the mod-anode voltage, and therefore the output power from the klystron. Results from the installation and testing of this system at ANL will be presented.  
WPAT048 Solid State Modulators for the International Linear Collider (ILC) 2998
 
  • M.A. Kempkes, N. Butler, J.A. Casey, M.P.J. Gaudreau, I. Roth
    Diversified Technologies, Inc., Bedford
 
  Diversified Technologies, Inc. is developing two solid state modulator designs for the ILC under SBIR funding from the DOE. The first design consists of a 150 kV hard switch. The key development in this design is the energy storage system, which must provide 25 kJ per pulse, at very tight voltage regulation over the 1.5 millisecond pulse. DTI’s design uses a quasi-resonant bouncer (with a small auxiliary power supply and switch) to maintain the voltage flattop, eliminating the need for massive capacitor banks. The second design uses a solid state Marx bank, with ~10 kV stages, to drive the ILC klystron. In this design, staggered turn-on of the Marx stages provides voltage regulation without the need for large capacitor banks. This paper will discuss design tradeoffs, power supply and control considerations, and energy storage requirements and alternatives for both designs.