A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Burnet, J.-P.

Paper Title Page
WPAE063 CERN-PS Main Power Converter Renovation: How To Provide and Control the Large Flow of Energy for a Rapid Cycling Machine? 3612
 
  • F. Bordry, J.-P. Burnet, F. Voelker
    CERN, Geneva
 
  The PS (Proton-Synchrotron) at CERN, which is part of the LHC injector chain, is composed of 101 main magnets connected in series. During a cycle (about 1 second), the active power at the magnet terminals varies from plus to minus 40 MW. Forty years ago, the solution was to insert a motor-generator (M-G) set between the AC supply network and the load. The M-G set acts as a fly-wheel with a stored kinetic energy of 233 MJ. The power converter is composed of two 12-pulse rectifiers connected in series. A renovation or replacement of the installation is planned in the near future as part of the consolidation of the LHC injectors. This paper presents a first comparison of technical solutions: - a direct connection to the 400 kV mains; - a kinetic energy storage system either by the existing or by a new “state of the art” M-G set; - a new local inductive or capacitive energy storage system. All these solutions need new power electronics equipment, which should be based on proven industrial topologies, techniques and components. The related studies will address the challenge of controlling by a modern power converter with local energy storage the positive and negative flow of energy to a rapid cycling accelerator load.