A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Bilheux, H. Z.

Paper Title Page
TPPE018 Characterization of a Tubular Hot-Cavity Surface Ionization Source 1581
 
  • Y. Liu, H. Z. Bilheux, Y. Kawai
    ORNL, Oak Ridge, Tennessee
 
  Funding: Managed by UT-Battelle, LLC, for the U.S. DOE under contract DE-AC05-00OR22725.

Elements with low ionization potentials can be efficiently ionized by positive surface ionization. It has been experimentally observed and theoretically shown that the ionization efficiency in a hot-cavity can be significantly higher than expected for the surface ionization mechanism. This is explained by the existence of a thermal plasma inside the cavity consisting of surface ionized ions and thermionic electrons. We have investigated the suggested ioniation mechanisms in a tubular hot-cavity surface ionization source where the area of the exit aperture is small compared with the tube inner surface. Thermal analyses of the tubular cavity and calculated mean number of wall collisions of a neutral particle in the cavity before escaping through the exit aperture are presented. Measured emittance and ionization efficiencies of various elements as a function of the cavity temperature for different cavity materials are discussed.

 
TPPE019 Laser Ion Source Development for ISOL Systems at RIA 1640
 
  • Y. Liu, C. Baktash, J.R. Beene, H. Z. Bilheux, C.C. Havener, H.F. Krause, D.R. Schultz, D.W. Stracener, C.R. Vane
    ORNL, Oak Ridge, Tennessee
  • K. Brueck, Ch. Geppert, T. Kessler, K. Wendt
    Johannes Gutenberg University Mainz, Mainz
 
  Funding: Managed by UT-Battelle, LLC, for the U.S. DOE under contract DE-AC05-00OR22725.

The isobaric purity of radioactive ion beams (RIBs) is of crucial importance to many experiments. Laser ion sources based on resonant photoionization have already proved to be of great value at existing ISOL RIB facilities. In these ion sources, ions of a selected isotope are produced by laser radiation via stepwise atomic resonant excitations followed by ionization in the last transition. Because each element has its own unique atomic energy levels, the resonant photoionization process can provide elemental selectivity of nearly 100%. We have initiated a research effort to develop a prototype laser ion source with the potential to achieve the high selectivity and high efficiency required for research with ISOL-generated RIBs at the Rare Isotope Accelerator (RIA). A pilot experiment has been conducted to demonstrate resonant photoionization of three atomic species using all-solid-state tunable Ti:Sapphire lasers. Three Ti:Sapphire lasers were provided by the University of Mainz and used in the experiment for three-photon resonant ionization of the elements. Laser generated Sn, Ni, and Ge ions have been successfully obtained in a hot-cavity laser ion source with overall efficiencies of 22%, 2.7%, and 3.3%, respectively.

 
TPPE020 Radioactive Ion Beam Development at the Holifield Radioactive Ion Beam Facility
 
  • D.W. Stracener, G. Alton, J.R. Beene, H. Z. Bilheux, J.-C. Bilheux, J.C. Blackmon, D. Dowling, R.C. Juras, Y. Kawai, Y. Liu, M.J. Meigs, P.E. Mueller, B. A. T. Tatum
    ORNL, Oak Ridge, Tennessee
  • H.K. Carter, A. Kronenberg, E.H. Spejewski
    Center of Excellence for RIB Studies for Stewardship Science, Oak Ridge Associated Universities, Oak Ridge, Tennessee
 
  Funding: Managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725.

Radioactive beams are produced at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory using the Isotope Separator On-Line (ISOL) technique. Radioactive nuclei are produced in a thick target via irradiation with energetic light ions (protons, deuterons, helium isotopes) and then post-accelerated to a few MeV/nucleon for use in nuclear physics experiments. An overview of radioactive beam development at the HRIBF will be presented, including ion source development, improvements in the ISOL production targets, and a description of techniques to improve the quality (intensity and purity) of the beams. Facilities for radioactive ion beam development include two ion source test facilities, a target/ion source preparation and quality assurance facility, and an in-beam test facility where low intensity production beams are used. A new test facility, the High Power Target Laboratory, will be available later this year. At this facility, high intensity production beams will be available to measure the power-handling capabilities of ISOL production targets. This information will be used to optimize target materials and geometries for high power densities.