A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Berz, M.

Paper Title Page
TPAP024 Decoupling Schemes for the Tevatron in the Presence of Skew Quadrupole Fields 1850
 
  • C. Johnstone, P. Snopok
    Fermilab, Batavia, Illinois
  • M. Berz
    MSU, East Lansing, Michigan
 
  Funding: Work is supported by the U.S. Department of Energy under contract no DE-AC02-76CH03000.

With increasing demands for luminosity, optimal performance must be extracted from the existing Tevatron optics. We have, therefore, initiated a high-order dynamical study of the Tevatron to assess the performance, functionality and potential of the baseline lattice. This work describes the nonlinear or high-order performance of the Tevatron lattice with emphasis on the coupled and increased nonlinear behavior introduced by the significant skew quadrupole error in combination with conventional sextupole correction, a behavior still clearly evident after optimal tuning of available skew quadrupole circuits. An optimization study is then performed using different skew quadrupole families, and, importantly, local and global correction of the linear skew terms in maps generated by the code, COSY. A correction scheme, with two families locally correcting each arc and eight independent correctors outside the arc for global correction is shown to be optimal and dramatically improve the linear performance of the baseline Tevatron lattice.

 
RPPT061 Linear Quadrupole Cooling Channel for a Neutrino Factory 3526
 
  • C. Johnstone
    Fermilab, Batavia, Illinois
  • M. Berz, K. Makino
    MSU, East Lansing, Michigan
 
  Funding: Work supported by the U.S. Dept. of Energy under contract no. DE-AC02-76CH03000.

The staging and optimization in the design of a Neutrino Factory are critically dependent on the choice and format of accelerator. Possibly the simplest, lowest-cost scenario is a nonscaling FFAG machine coupled to a linear (no bending) transverse cooling channel constructed from the simplest quadrupole lens system, a FODO cell. In such a scenario, transverse cooling demands are reduced by a factor of 4 and no longitudinal cooling is required relative to acceleration using a Recirculating Linac (RLA). Detailed simulations further show that a quadrupole-based channel cools efficiently and over a momentum range which is well-matched to FFAG acceleration. Details and cooling performance for a quadrupole channel are summarized in this work.