A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Bartolini, R.

Paper Title Page
MPPE014 Non-Linear Beam Dynamics Studies of the Diamond Storage Ring 1410
 
  • R. Bartolini, A.I. Baldwin, M. Belgroune, I.P.S. Martin, J.H. Rowland, B. Singh
    Diamond, Oxfordshire
  • J.K. Jones
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
 
  The non-linear beam dynamics have been investigated for the non-zero dispersion lattice of the Diamond storage ring. Effects in realistic lattice configurations such as the introduction of coupling errors, beta beating, closed orbit correction, quadrupole fringe field and in-vacuum and helical insertion devices have been studied in the presence of realistic physical aperture limitations. Frequency map analysis together with 6D tracking allows identification of the limiting resonances as well as the loss locations and calculation of the influence of non-linear longitudinal motion on the Touschek lifetime. The sensitivity of the lattice to some of these effects leads to the identification of a better working point for the machine.  
MPPE015 Non-Linear Ring Model Calibration with Frequency Analysis of Betatron Oscillations 1452
 
  • R. Bartolini
    Diamond, Oxfordshire
  • F. Schmidt
    CERN, Geneva
 
  A precise model of an accelerator ring is crucial to achieve ultimate performance both in synchrotron light sources and high energy synchrotrons. Algorithms have been developed to calibrate the linear model of the ring. They have been successfully applied experimentally to determine and correct the linear optics of the machine. More recently the Frequency Map Analysis has been used to model also the non-linear optics. We propose here a technique based on the fit of non-linear spectral lines to recover the non-linear driving terms and to compensate the non-linear field errors around the ring.  
RPAE052 Overview of Accelerator Physics Studies and High Level Software for the Diamond Light Source 3188
 
  • R. Bartolini, A.I. Baldwin, M. Belgroune, C. Christou, V.C. Kempson, I.P.S. Martin, J.H. Rowland, B. Singh
    Diamond, Oxfordshire
  • D.J. Holder, J.K. Jones, S.L. Smith, J.A. Varley, N.G. Wyles
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
 
  DIAMOND is a 3 GeV synchrotron light source under construction at Rutherford Appleton Laboratory in Oxfordshire (UK). The accelerators complex consists of a 100 MeV LINAC, a full energy booster and a 3GeV storage ring with 22 straight sections available for IDs. Installation of all three accelerators has begun, and LINAC commissioning is due to start in Spring 2005. This paper will give an overview of the accelerator physics activity to produce final layouts and prepare for the commissioning of the accelerator complex. The DIAMOND facility is expected to be operational for users in 2007