A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Bane, K.L.F.

Paper Title Page
RPPE057 Resistive Wall Wakefield in the LCLS Undulator 3390
 
  • K.L.F. Bane, G.V. Stupakov
    SLAC, Menlo Park, California
 
  Funding: Work supported by the U.S. Department of Energy, contract DE-AC03-76SF00515.

In the Linac Coherent Light Source (LCLS), a short, intense bunch (rms length 20 microns, bunch charge 1 nC) will pass through a small, long undulator beam pipe (radius 2.5 mm, length 130 m). The wakefields in the undulator, particularly the resistive wall wake of the beam pipe, will induce an energy variation along the bunch, a variation that needs to be kept to within a few times the Pierce parameter for all beam particles to continue to lase. Earlier calculations included the short-range resistive wall wake, but did not include the frequency dependence of conductivity (ac conductivity) of the beam pipe walls. We show that for copper and for the LCLS bunch structure, including the ac conductivity results in a very large effect. We show that the effect can be ameliorated by choosing aluminum and also by taking a flat, rather than round, beam pipe chamber (if the vertical aperture is fixed). The effect of the (high frequency) anomalous skin effect is also considered.

 
RPPP003 Proposal of the Next Incarnation of Accelerator Test Facility at KEK for the International Linear Collider 874
 
  • H. Hayano, S. Araki, H. Hayano, Y. Higashi, Y. Honda, K.-I. Kanazawa, K. Kubo, T. Kume, M. Kuriki, S. Kuroda, M. Masuzawa, T. Naito, T. Okugi, R. Sugahara, T. Tauchi, N. Terunuma, N. Toge, J.U. Urakawa, V.V. Vogel, H. Yamaoka, K. Yokoya
    KEK, Ibaraki
  • I.V. Agapov, G.A. Blair, G.E. Boorman, J. Carter, C.D. Driouichi, M.T. Price
    Royal Holloway, University of London, Surrey
  • D.A.-K. Angal-Kalinin, R. Appleby, J.K. Jones, A. Kalinin
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • P. Bambade
    LAL, Orsay
  • K.L.F. Bane, A. Brachmann, T.M. Himel, T.W. Markiewicz, J. Nelson, N. Phinney, M.T.F. Pivi, T.O. Raubenheimer, M.C. Ross, R.E. Ruland, A. Seryi, C.M. Spencer, P. Tenenbaum, M. Woodley
    SLAC, Menlo Park, California
  • S.T. Boogert, A. Liapine, S. Malton
    UCL, London
  • H.-H. Braun, D. Schulte, F. Zimmermann
    CERN, Geneva
  • P. Burrows, G.B. Christian, S. Molloy, G.R. White
    Queen Mary University of London, London
  • J.Y. Choi, J.Y. Huang, H.-S. Kang, E.-S. Kim, S.H. Kim, I.S. Ko
    PAL, Pohang, Kyungbuk
  • S. Danagoulian
    North Carolina A&T State University, Greensboro, North Carolina
  • N. Delerue, D.F. Howell, A. Reichold, D. Urner
    OXFORDphysics, Oxford, Oxon
  • J. Gao, W. Liu, G. Pei, J.Q. Wang
    IHEP Beijing, Beijing
  • B.I. Grishanov, P.L. Logachev, F.V. Podgorny, V.I. Telnov
    BINP SB RAS, Novosibirsk
  • J.G. Gronberg
    LLNL, Livermore, California
  • Y. Iwashita, T. Mihara
    Kyoto ICR, Uji, Kyoto
  • M. Kumada
    NIRS, Chiba-shi
  • S. Mtingwa
    North Carolina University, Chapel Hill, North Carolina
  • O. Napoly, J. Payet
    CEA/DSM/DAPNIA, Gif-sur-Yvette
  • T.S. Sanuki, T.S. Suehara
    University of Tokyo, Tokyo
  • T. Takahashi
    Hiroshima University, Higashi-Hiroshima
  • E.T. Torrence
    University of Oregon, Eugene, Oregon
  • N.J. Walker
    DESY, Hamburg
 
  The realization of the International Linear Collider (ILC) will require the ability to create and reliably maintain nanometer size beams. The ATF damping ring is the unique facility where ILC emittancies are possible. In this paper we present and evaluate the proposal to create a final focus facility at the ATF which, using compact final focus optics and an ILC-like bunch train, would be capable of achieving 35nm beam size. Such a facility would enable the development of beam diagnostics and tuning methods, as well as the training of young accelerator physicists.  
RPPT035 Optimization of the LCLS X-Rray FEL Output Performance in the Presence of Strong Undulator Wakefields 2396
 
  • S. Reiche
    UCLA, Los Angeles, California
  • K.L.F. Bane, P. Emma, Z. Huang, H.-D. Nuhn, G.V. Stupakov
    SLAC, Menlo Park, California
  • W.M. Fawley
    LBNL, Berkeley, California
 
  Funding: The work was supported by the DOE Contract No. DE-AC02-76SF00515.

The Linac Coherent Light Source (LCLS) Free-Electron Laser will operate in the wavelength range of 1.5 to 15 Angstroms. Energy loss due to wakefields within the long undulator can degrade the FEL process by detuning the resonant FEL frequency. The wakefields arise from the vacuum chamber wall resistivity, its surface roughness, and abrupt changes in its aperture. For LCLS parameters, the resistive component is the most critical and depends upon the chamber material (e.g. Cu) and its radius. To study the expected performance in the presence of these wakefields, we make a series of "start-to-end" simulations with tracking codes PARMELA and ELEGANT and time-dependent FEL simulation codes Genesis 1.3 and Ginger. We discuss the impact of the wakefield on output energy, spectral bandwidth, and temporal envelope of the output FEL pulse, as well as the benefits of a partial compensation obtained with a slight z dependent taper in the undulator field. We compare these results to those obtained by decreasing the bunch charge or increasing the vacuum chamber radius. We also compare our results to those predicted in concurrent analytical work.

 
FPAT091 LiTrack: A Fast Longitudinal Phase Space Tracking Code with Graphical User Interface 4266
 
  • P. Emma, K.L.F. Bane
    SLAC, Menlo Park, California
 
  Funding: Work supported by U.S. Department of Energy contract DE-AC02-76SF00515.

Many linear accelerators, such as linac-based light sources and linear colliders, apply longitudinal phase space manipulations in their design, including electron bunch compression and wakefield-induced energy spread control. Several computer codes handle such issues, but most require detailed information on the transverse focusing lattice. In fact, in most linear accelerators, the transverse distributions do not significantly affect the longitudinal, and can be ignored initially. This allows the use of a fast 2D code to study longitudinal aspects without time-consuming considerations of the transverse focusing. LiTrack is based on a 15-year old code (same name) originally written by one of us (KB), which is now a MATLAB-based code with additional features, such as a graphical user interface and output plotting. The single-bunch tracking includes RF acceleration, bunch compression to 3rd order, geometric and resistive wakefields, aperture limits, synchrotron radiation, and flexible output plotting. The code was used to design both the LCLS and the SPPS projects at SLAC and typically runs in <1 minute. We describe the features, show some examples, and provide access to the code.