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Abstract level/scale of resolution. In all these models numerical
o ._modellin monstr h ran f coherent high-
We present the applications of methods from nonlin: Od? g demonstrates the appearance of co ere t hig
i . X : . _localized structures and stable patterns formation. Start-
ear local harmonic analysis for calculations in nonlin- . . .
. . . . ng from Vlasov-Maxwell-Poisson equations in part 2, we
ear collective dynamics described by different forms o . L
) . : consider the approach based on variational-wavelet for-
Vlasov-Maxwell-Poisson equations. Our approachis base C : L .
. S : mulation in part 3. We give the explicit representation
on methods provided the possibility to work with well- : : )
. : . . for all dynamical variables in the base of compactly sup-
localized in phase space bases, which gives the most sparse

. é)é)rted wavelets or nonlinear eigenmodes. Our solutions
representation for the general type of operators and go ) )
are parametrized by solutions of a number of reduced al-

convergence properties. The consideration is based on_a

. S gebraical problems one from which is nonlinear with the
number of anzatzes, which reduce initial problems to . . LT :
stame degree of nonlinearity as initial differential problem

number of dynamical 'syste.ms and on \(arla.tlonal—waveleand the others are the linear problems which correspond
approach to polynomialirational approximations for NON35 the particular method of calculations inside concrete
linear dynamics. This approach allows us to construct th\?\/avelet scheme. In part 4 we consider numerical modelling
solutions via nonlinear high-localized eigenmodes expar; )
sions in the base of compactly supported wavelet bases an
control contribution from each scale of underlying mul-

tiscales. Numerical modelling demonstrates formation of 2 COLLECTIVE MODELSVIA

coherent structures and stable patterns. VLASOV-MAXWELL-POISSON

EQUATIONS

1 INTRODUCTION Analysis based on the non-linear Vlasov-Maxwell-Poi-

In this paper we consider the applications of numericalsson equations leads to more clear understanding collec-
-analytical technique based on the methods of local noriive effects and nonlinear beam dynamics of high intensity
linear harmonic analysis or wavelet analysis to nonlined®€am propagation in periodic-focusing and uniform-focu-
beam/accelerator physics problems which can be chara®ng transport systems. We consider the following form of
terized by collective type behaviour and described by someguations (ref. [1] for setup and designation):
forms of Vlasov-Maxwell-Poisson equations [1]. Such ap-

%sed on our analytical approach.

p.roach may be useful in all models in w_hich it is pos- 9 pxi +py£ _ [kz(s)a: + 8_w] o
sible and reasonable to reduce all complicated problems ‘95 Ox dy O 1 Op,
related with statistical distributions to the problems de- oY1 0

k a | a9 y Iy Py Py, = 07 1
scribed by systems of nonlinear ordinary/partial differen- [ v(s)y + ay] Opy }fb(x Y PesPy> 5) (1)
tial equations with or without some (functional)constraints. 92 52 2K,
Wavelet analysis is a set of mathematical methods, which (@ + 8—312)1/1 =N /dpwdpyfb; (2)

gives the possibility to work with well-localized bases in

functional spaces and gives the maximum sparse forms for /dxdydpﬁdpyfb =N, 3)

the general type of operators (differential, integral, pseu-

dodifferential) in such bases. Our approach is based ofdhe corresponding Hamiltonian for transverse single-par-
the variational-wavelet approach from [2]-[13], which al-ticle motion is given by

lows us to consider polynomial and rational type of non- , , 1 )
linearities. The solution has the multiscale/multiresolution H(2,y, Pz, Py, 5) 5 Py +py) + 5[7‘%(5)4” )
degomposition via nonlinear high-locali;ed eigenmpde_s, ey (8)y%] + Hy (2,9, po, Py, 5) + (2,7, 5)

which corresponds to the full multiresolution expansion in

a” under'ying time/space Sca|esl The same is correct dehereHl iS nonlinear (pOlynomiallrational) part Ofthe fu”
the contribution to power spectral density (energy Sped:|ami|t0nian. In case of Vlasov-Maxwell-Poisson system
trum): we can take into account contributions from eacive may transform (1) into invariant form

* e-mail: zeitin@math.ipme.ru % + [fp, H] = 0. (5)
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3 MULTISCALE REPRESENTATIONS action of a microscope. We have contribution to final result

. . . . . __from each scale of resolution from the whole infinite scale
We obtain our multiscale/multiresolution representations

(formulae (11) below) for solutions of equations (1)-(5)Of spaces. More exqctly, the cl_osed subspﬁp(g' € Z)
: o . corresponds to level j of resolution, or to scale j. We con-
via variational-wavelet approach for the following formal

. ) . . sider a multiresolution analysis &?(R") (of course, we
systems of equations (with corresponding obvious con-

straints on distribution function),which are the genera[nay cons}m_jerany_dﬁfe:ent(fjunctt)lonal space) which is a se-

form of these equations. Let L be an arbitrary (non) jj.-quence otincreasing closed su spacgs

near differential/integral operator with matrix dimension VecCcVoycVpcViCcVa C.

d, which acts on some set of functiols = ¥(s,z) = o . .

(\1,1(8 ), ..., Ui(s x)) s,z € Q0 C R from L2(): satisfying the following properties: 1&¥; be the orthonor-
o ) mal complement ofi’; with respect toV;;1 : Vj41 =

LY = L(R(s,x),s,z)¥(s,z) =0, (6) Vi W then
(z are the generalized space coordinates or phase space co- ) oy
ordinates,s is “time” coordinate). After some anzatzes L*(R) =Vp @Wj: (10)
[13],[14] the main reduced problem may be formulated as J=0
the system of ordinary differential equations As a result the solution of equations (1)-(5) has the fol-
df; lowing multiscale/multiresolution decomposition via non-
Qif) gy =Lilh,s), f={(fr, fu), (7)  linear high-localized eigenmodes

i=1,...,n, maxdeg P, =p, maxdeg Q; = X .

axdeg by =p, maxdeg Qi =q U(s,o)= Y ayUi@)Vi(s), (11)
or a set of such systems corresponding to each indepen- (B)ez® _
dent coordinate in phase space. They have the fixed initial V7 (s) = V™ (s) + Y Vi (w/'s), w] ~2'
(or boundary) conditiong; (0), whereP;, (); are not more I>N
than polynomial functions of dynamical variablg¢s and i i,slow i, 2 2 m

. . U =Uy, U, ~ 2

have arbitrary dependence on time. As result we have the (@) (@) + m;w m(@m), W ’
following reduced algebraical system of equations on the -
set of unknown coefficients? of localized eigenmode ex- which corresponds to the full multiresolution expansion

pansion (formula (9) below): in all underlying time/space scales. Formula (11) gives
us expansion into the slow paktf\’,?l\l“{ and fast oscillating
L(Qijs A, o) = M(Pij, A, B), (8)  parts for arbitrary N, M. So, we may move from coarse

where operators L and M are algebraization of RHS an?cales of resolution to the finest one for obtaining more de-

LHS of initial problem (7) anch are unknowns of reduced ailed !nformatlon about our dynamical process. The first
i . terms in the RHS of formulae (11) correspond on the global

system of algebraical equations (RSAE) (8). After SOIu'evel of function space decomposition to resolution space

tion of RSAE (8) we determine the coefficients of Waveleg P P P

expansion and therefore obtain the solution of our initiafind the second ones to detail space. In this way we give

problem. It should be noted if we consider only trur]Cate(%ontnbutmn to our full solution from each scale of resolu-

. . ion or htim le or from h nonlinear eigen-
expansion with N terms then we have from (8) the systemO or each time/space scale or from each nonlinear eige

of N x n algebraical equations with degrée- maz {p, ¢} mode. This functional space decomposition corresponds to

. . L - _.exact nonlinear eigenmode decompositions. It should be
and the degree of this algebraical system coincides with de- . . .

ST . . _noted that such representations give the best possible local-
gree of initial differential system. So, we have the solution

of the initial nonlinear (rational) problem in the form |zat|or_1 properties in the cqrres.pondmg (phase)space/time
coordinates. In contrast with different approaches formu-

N lae (11) do not use perturbation technique or linearization
fi(s) = £i(0) + D X fu(s), (9) procedures and represent dynamics via generalized nonlin-

k=1 ear localized eigenmodes expansion. So, by using wavelet
bases with their good (phase) space/time localization prop-

where coefficientd;’ are the roots of the corresponding re erties we can construct high-localized coherent structures

duced algebraical (polynomial) proplem RSAE .(8)' Cc.m.'in spatially-extended stochastic systems with collective be-
sequently, we have a parametrization of solution of iz vi
. : . aviour.

tial problem by the solution of reduced algebraical prob-

lem (8). The obtained solutions are given in the form (9), 4 MODELLING

where f,(¢) are basis functions obtained via multiresolu-

tion expansions and represented by some compactly sup-Multiresolution/multiscale representations for the so-
ported wavelets. Because affine group of translation arldtions of equations from part 2 in the high-localized

dilations is inside the approach, this method resembles tli@ses/eigenmodes are demonstrated on Fig. 1-Fig. 3. This
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modelling demonstrates the appearance of stable patterns
On
Fig. 1 we present contribution to the full expansion from

formation from high-localized coherent structures.

level 1 of decomposition (11). Fig. 2, 3 show the rep
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Figure 1: Eigenmode of level 1.

Figure 2: Appearance of coherent structure.

Figure 3: Stable pattern 1.
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