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Abstract

For rotation-invariant Hamiltonian systems, canonical
angular momentum is conserved. In beam optics, this state-
ment is known as Busch’s theorem. This theorem can be
generalized to symplectic mappings; two generalizations
are presented in this paper. The first one states that a group
of rotation-invariant mappings is identical to a group of the
angular-momentum preserving mappings, assuming both of
them symplectic and linear. The second generalization of
Busch’s theorem claims that for any laminar beam which
rotation symmetry happened to be preserved, an absolute
value of the angular momentum of any particle from this
beam is preserved as well; the linear symplectic mapping
does not have to be rotation-invariant here.

1 INTRODUCTION

When a beam optics consists of non-dissipative axial-
invariant elements, such as drifts, solenoids, round electro-
static lenses or axisymmetric RF fields, the canonical angu-
lar momentum (CAM) of any particleM = xpy − ypx is
preserved; here(x, px) and(y, py) are horizontal and ver-
tical canonically conjugated pairs. This statement follows
from the Hamilton equations applied to the canonical angu-
lar variablesM , θ and is known as Busch’s theorem (see,
e. g. [1], p. 34). This theorem is extremely useful for
such beam optics, referred to aslocal-invariant [2]. Local-
invariant optics continuously preserves the CAM and beam
axial symmetry.

However, the beam symmetry might also be preserved
after a mapping which does not correspond to any se-
quence of the axial-invariant elements. If the mapping is
rotation-invariant, or commute with rotations, it preserves
the beam axial symmetry. This kind of mapping, though,
can be constructed on a basis of non-invariant elements as
dipoles, quadrupoles, non-symmetric RF fields, etc. The
Busch’s theorem says nothing about the CAM preservation
by this global-invariant mapping. Thus, the question ap-
pears, whether the CAM is preserved by rotation-invariant
symplectic mappings? (Here, only symplectic mappings
are considered. A mapping is symplectic if particle motion
is Hamiltonian, see e. g. Ref. [3] p. 51; also in the next
section.) For linear transformations, this question is treated
in the next section, and the positive answer is found. It is
proved there that the group of rotation-invariant mappings
is identical to the group of the CAM-preserving mappings,
assuming both of these groups linear and symplectic.

However, the beam round symmetry might be restored
even by non-invariant mapping. The first example is a mir-
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ror reflection. This kind of symplectic mappings does not
commute with rotations, but preserves axial symmetry of
any rotation-invariant initial beam distribution. Reflections
do not preserve the CAM: they reverse its sign, but they
still do preserve its absolute value. The second example
shows that a mapping can preserve axial symmetry for a
particular beam, but do not preserve for an arbitrary round
beam. Indeed, imagine a symplecticx−y-uncoupled map-
ping, which acts vertically as the identity, and horizontally
as a drift. Generally, this transformation does not preserve
the beam symmetry: initially round beam is not round af-
ter that mapping. However, a round beam with zero mo-
mentapx = py = 0 is transformed into round beam again
by this mapping. Thus, the beam rotation symmetry can be
preserved even by a non-invariant mapping, either for any
initial beam distribution (reflections) or for some distribu-
tions special for that mapping. Let it to be assumed now that
a particular initially round beam distributionis mapped onto
a round beam again. It is clear from the first example with
reflections, that the sign of the CAM can be reversed with-
out any damage to the beam axial symmetry. However, it
can be suspected that if the beam symmetry is restored by
a symplectic mapping, the absolute value of the CAM for
every particle of this beam is restored as well. For laminar
beams mooving in electro- and magneto-static fields, this
statement is proven in Ref. [4]. For laminar beams and any
kind of linear symplectic mappings, this statement is found
to be true in the section 3.

2 MAPPING INVARIANCE AND
ANGULAR MOMENTUM

PRESERVATION

Group of rotations in the transverse plane through angles
θ can be presented by matrices

R(θ) =
(

cI sI
−sI cI

)
(1)

with c = cos θ , s = sin θ andI as the2 × 2 identity ma-
trix. Rotation invariance of a transformationT means that
it commutes with the rotations:

R · T − T · R = 0 . (2)

This condition is equivalent to its particular case of an in-
finitesimal rotation by an angledθ when

R = I + G · dθ ; G =
(

0 I
−I 0

)
; G2 = −I (3)

whereI and I are4 × 4 and2 × 2 identity matrices cor-
respondingly. Then, the invariance condition reduces to a
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commutation of the mappingT with the infinitesimal oper-
atorG

G · T − T · G = 0 . (4)

The mappingT is assumed to be symplectic:

T TST = S , (5)

where

S =
(

J 0
0 J

)
; J =

(
0 1
−1 0

)
; S2 = −I (6)

is the symplectic unit matrix,I is the4× 4 identity matrix
and the superscriptT stands for the transposing.

It can be shown now that symplectic invariant transfor-
mationsT preserve the CAM

M ≡ xpy − ypx ≡
1
2
xT · L · x (7)

where

L =
(

0 J
−J 0

)
; J =

(
0 1
−1 0

)
; L2 = I . (8)

Note that the CAM matrixL is rotation-invariant:

G · L − L · G = 0 . (9)

In terms of its matrixL, CAM preservation at the map-
pingT can be expressed as

T TLT = L. (10)

To prove that this is true when conditions (5, 4) are pro-
vided, it is convenient to use the relation between the in-
finitesimal operatorG, the symplectic unit matrixS, and the
CAM matrixL:

S · L = L · S = −G . (11)

which is straightforward to prove. It means that the matri-
cesS, L andG form an algebra: any their product returns
one of them. From (9, 11) the symplecticity matrix can be
presented as

S = −L · G . (12)

Being substituted in the symplecticity condition (5), after
the commutation (4), it leads to the CAM preservation (10).
Thus, the invariant transformations preserve the CAM.

The reverse statement can be proven as well: if a sym-
plectic mapping preserves the CAM of any initial state, it
is rotationally invariant. Indeed, with the matrixT T ex-
pressed from the symplecticity condition(5) and substituted
in the CAM preservation (10), it leads to what can be seen
as the invariance property (4) when Eq. (11) is used. Thus,
mapping invariance gives rise to CAM preservation and
vice versa, so these properties are absolutely equivalent.

A general form of the CAM-preserving matrices was
found by E. Pozdeev [5] and E. Perevedentsev [6] (see de-
tails in [7]):

T =
(

T · cos θ T · sin θ
−T · sinθ T · cos θ

)
≡ R(θ)

(
T 0
0 T .

)

(13)

Merged with the reflections, it leads to a wider group:

T = R(θ)
(

T 0
0 ±T .

)
(14)

As it is shown in the next section, this group includes all the
mappings that preserve the axial symmetry for any initial
round beam distribution.

3 BEAM SYMMETRY AND ANGULAR
MOMENTUM PRESERVATION

As it was discussed in the section 1, the round symmetry
of a particular beam might be preserved by a non-invariant
mapping as well. The question is, whether the CAM is pre-
served together with the beam symmetry even in this case?

For hydrodynamic, or laminar beams, a positive answer
to this question follows from the generalized Busch’s theo-
rem [4]. The theorem states that when such a beam is trans-
ported by means of arbitrary static electric and magnetic
fields, the contour integral

∮
Γ

	p	dl =
∮

Γ

	k	dl − eΦ/c (15)

is conserved. Here the contourΓ bounds an arbitrary tube
of trajectories in the 3D coordinate spacex, y, z andΦ is
the magnetic flux through the contour. If the initial and fi-
nal beam states are rotationally invariant, the contourΓ is a
circumference in the transverse plane, and the CAM preser-
vation follows. Note that the field linearity is not required
here.

Below, this theorem is extended from the electro- and
magneto-static fields to arbitrary Hamiltonian systems.
This extension, however, requires to assume the linearity
of the transformation. Thus, the statement to be proved
claims following: if a particular laminar round beam is
transformed by a symplectic linear mapping into a round
state again, the CAM of every particle is restored.

To prove this, a property of the symplectic transforma-
tions to conserve skew-scalar products can be used (see e.
g. [8]). The skew-scalar product of two vectors in the
4D transverse phase spacex1 = (x1, px1, y1, py1) and
x2 = (x2, px2, y2, py2) is an antisymmetric bilinear form
[x1,x2]. Expressed in terms of the usual scalar product, it
can be written as[x1,x2] = (x1,Sx2) with S as a rotation
by 90o in each of the phase planes, or

[x1,x2] = −x1px2 − y1py2 + x2px1 + y2py1.

Let x1i andx2i be two arbitrary vectors of the initial state
finally transformed intox1f andx2f . Due to the symplec-
ticity,

[x1i,x2i] = [x1f ,x2f ] (16)

for any choice ofx1 andx2. It can be seen that for lami-
nar beams, the angles between their 2Dx− y components
are conserved by the transformation. This property is an
obvious consequence of the rotation invariance of the both
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states: without it, there would be an angular asymmetry of
the final beam density distribution. However, the sign of
this angle can be changed that would not contradict the an-
gular symmetry of the final state. The two initialvectors can
be taken as 2D-orthogonal:

x1i = (ri, pir, 0, pit)
x2i = x̃1i ≡ (0,−pit, ri, pir)

(17)

having the angular momentumMi = ripit whereri is
the initial beam radius. Because of the angle conservation,
these two vectors are 2D-orthogonal again after the trans-
formation. Without a lack of generality, thex-axis can be
assumed to go along the vector	x1 both for the initial and
the final states; this follows from symplecticity of the rota-
tions. So the final states can be presented as

x1f = (rf , pfr, 0, pft)
x2f = ±x̃1f ≡ ±(0,−pft, rf , pfr)

(18)

withMf = ±rfpft as the final angular momentum.
In fact, the symplecticity condition (16) for a given vec-

torx1 and arbitraryx2 is equivalent to the particular choice
(17, 18). Indeed, for a givenx1, anyx2 can be expanded
over the two orthogonal vectors:x1 and its orthogonal
counterpart̃x1 . Then, the part ofx2 parallel tox1 gives
an identical zero for the both sides of the symplecticity con-
dition (16), while the component along̃x1 gives the same
result as (17).

Conservation of the skew-scalar product

[x1i,x2i] = [x1f ,x2f ]

for the orthogonal parex1, x2 immediately yields

Mi = ±Mf (19)

as was to be shown.
Thus, no transformation can change an absolute value

of the canonical angular momentum of a particle with-
out breaking the rotational symmetry of the laminar beam,
which this particle belongs to.

Actually, the statement just been proven means that the
property of the canonical momentum conservation goes be-
yond the mapping (or Hamiltonian) invariance. For the
invariant mappings, any initially symmetric state of beam
transforms into a symmetric state again. It was shown
above that the mapping invariance does not follow from
the fact that one particular symmetric state was eventually
transformed into other, also symmetric, state, which prop-
erty can be referred to as the projective invariance. It was
proved in fact that the mapping invariance is a somewhat
surplus requirement for the momentum conservation; the
projective invariance for a laminar beam is sufficient to
claim that every particle of this beam restores the absolute
value of its CAM.

It follows from above that if a mapping preserves rotation
symmetry of any initialbeam, than, it preserves the absolute
value of the CAM by itself; thus such a mapping has a form
of Eq. (14).

4 SUMMARY

Two statements are proved above, showing a deep re-
lation between rotation symmetry and angular momentum
preservation. First, it is proved that a group of rotation-
invariant mappings is identical to a group of the angular-
momentum preserving mappings. Second, it is shown that
if a laminar round beam is symplectically mapped onto a
round beam again, an absolute value of the canonical angu-
lar momentum for any particle of this beam is preserved -
even if the mapping is not rotation-invariant.

The author is thankful to V. Danilov, A. Shemyakin and
S. Nagaitsev for stimulating discussions.
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