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Abstract 

Green’s reciprocation theorem was applied to four-
button beam position monitors (BPMs) for the calculation 
of BPM coefficients. Induced potentials on the buttons in 
geometries of a small-gap and a circular beam chamber 
were calculated as examples. 

1 INTRODUCTION 
An induced current, due to a highly relativistic charged 

particle beam on the chamber wall, will have the same 
longitudinal intensity modulation as the charged particle 
beam. When the wavelength of the beam intensity 
modulation is large compared with the dimensions of the 
button electrodes, which are used as BPMs, the 
calculation of the induced currents on the buttons may be 
simplified as a 2-D electrostatic problem. Green’s 
reciprocation theorem (or reciprocity relation for 
electrostatic problems) [1] is applied to four-button BPMs 
in this paper. BPM coefficients are calculated by 
conformal mappings for geometries of a small-gap and a 
circular beam chamber. 

2 GREEN’S RECIPROCATION THEOREM 
First, we consider that a set of n charges q1, q2,…, qn on 

n conductors will give rise to potentials V1, V2,…, Vn on 
the conductors. The potential Vm on conductor m is 
dependent on all qi except qm. If a different set of charges 
qp1, qp2,…, qpn gives rise to potentials Vp1, Vp2,…, Vpn, then 
Green’s reciprocation theorem states that 
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Equation (1) may be applied to analyze a system of 
four-button BPMs as shown in the cross section of a beam 
chamber in Fig. 1(a). At first the beam chamber, as well as 
the BPM buttons, are assumed to be grounded. If we place 
a point charge qo at a beam position (xo, yo), then induced 
charges q1, q2, q3, and q4 will appear on the four buttons. 
(We assume that the potential at the beam position is Vs.) 
We then remove the charges from the beam position and 
the buttons in order to have a new set of charges and 
potential. This time, if we apply a potential of +Vp to all 
four buttons (and at the same time we assume a charge 
distribution of qp1, qp2, qp3, and qp4 on the four buttons), a 
potential we call Vps will be induced at the beam position. 
These two sets of charge/potential distributions are 
summarized in Table 1.  Then, from Eq. (1) we have the 

relation, qoVps + (q1 + q2 + q3 + q4)Vp  = 0, or 
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We may also apply the potential Vp on the buttons in 
two different configurations besides the above case for all 
+Vp. By setting the upper two buttons to +Vp and the 
lower two buttons to −Vp, the potential at (xo, yo) will be 
called Vpy. Similarly, by setting the right two buttons to 
+Vp and the left two buttons to −Vp, the potential at (xo, yo) 
will be called Vpx. Then, from Eq. (1) we have 
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Equations (2) - (4) imply that induced charges Qs, Qy, 
and Qx, corresponding to the sum, vertical, and horizontal 
signals for qo at (xo, yo), are proportional to the induced 
potentials Vps, Vpy, and Vpx at (xo, yo), respectively. When 
the position of qo changes, Qs, Qy, and Qx change due to 
the redistribution of the induced charges on the buttons. 
This is equivalent to having different induced potentials at 
the new beam position. 

Except for a few cases of simple chamber geometry, 
derivations of analytical expressions for the induced 
charges on the buttons are limited. When finite-element 
modeling must be used to calculate induced charges on 
the buttons, one mesh geometry is required for each beam 
position (xo,yo), making it almost impossible to have a 
complete set of calculations in the BPMs plane. Instead, 
when Eqs. (2) – (4) are used after applying Green’s 
reciprocation theorem, the three induced potentials Vps, 
Vpy, and Vpx may be calculated by applying potentials +Vp 
or −Vp on the buttons using only one set of mesh 
geometry, which simplifies the calculation significantly. 

 
Table 1: Charge/Potential Distributions (b: button) 
 (xo,yo) b 1 b 2 b 3 b 4 

Charge (qi) qo q1 q2 q3 q4 
Voltage (Vi) Vs 0 0 0 0 
Charge (qpi) 0 qp1 qp2 qp3 qp4 
Voltage (Vpi) Vps Vp Vp Vp Vp 

3 OPTIMIZED CONFIGURATION IN A 
SMALL-GAP BEAM CHAMBER 

Figure 1 shows the conformal mapping of the inner region 
of a “small-gap” beam chamber in the z-plane into the 
upper half-plane of the w-plane under the 
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transformation w = iexp(pz), where p = π/2h and h is the 
half-gap of the chamber. We assume that the chamber 
width is much larger than its gap height. (A width-to-
height ratio larger than 5 gives sufficiently accurate 
results when compared with calculations using Green’s 
function method for rectangular chambers.) The charge 
qo(zo) in the z-plane is then located at wo in the w-plane. 

 

 

 
 

Figure 1: Conformal mapping of a small-gap beam 
chamber from (a) z-plane to (b) w-plane for a relatively 
large width-to-height aspect ratio of the chamber by w = 
iexp(πz/2h). 
 

For this relatively simple geometry, when a potential of 
+Vp or −Vp is applied on the buttons, the induced potentials 
Vps, Vpy, and Vpx at the beam position may be calculated in 
the w-plane. First, assuming that the beam chamber is 
grounded, the induced potential at the beam position 
V(xo,yo) due to potential Vp on one button may be 
calculated from the Poisson’s formula for the upper half-
plane: 
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where exp( ) sin ,
o oou px py= −  exp( ) cos ,

o oov px py=  

and u1 and u2 are the button locations corresponding to x1 
and x2 in Fig. 1(a). Then, for four buttons located 
symmetrically with respect to the x- and y-axes, Vps and 
Vpy, were calculated from Eqs. (2), (3), and (5): 
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Figure 2: 3-D plots of (a) normalized vertical (Vpy/Vps) 
and (b) normalized horizontal (Vpx/Vps) signals in xo/h-yo/h 
plane for the optimized configuration in a small-gap beam 
chamber. 
 

Figure 2 shows 3-D plots of the normalized vertical and 
horizontal signals, Vpy/Vps and Vxy/Vps, in the plane of 
normalized beam position (xo/h, yo/h). The 3-D plots were 
calculated for the case of x1 = 0 and x2 = 2h, which is the 
optimized BPM configuration in a small-gap beam 
chamber [2]. For |xo/h| < 2, the vertical signal shows 
excellent linearity with respect to the normalized vertical 
position. The horizontal signal, on the other hand, is rather 
nonlinear compared with the vertical one, for |xo/h| > 0.5. 

4 CIRCULAR BEAM CHAMBER 
Four-button BPMs in a circular beam chamber of radius 

a in the z-plane are mapped into the w-plane in Fig. 3 
under the transformation w = i(a+z)/(a-z). The buttons are 
located symmetrically with respect to the x- and y-axes of 
the chamber. By summing up the induced potential from 
the four buttons, the potential for the sum signal Vps(xo,yo) 
due to potential Vp may be calculated from Eqs. (2) and 
(5): 
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where 2 22 /[(1 ) ],
o o o o

u y x y= − − +   
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ξ(θ) = −sinθ/(1−cosθ), θ1  = θp−∆θ/2, θ2  = θp+∆θ/2, and z 
is normalized to the chamber radius a. 
 

 

 
 

Figure 3: Conformal mapping of a circular chamber from 
(a) z-plane to (b) w-plane by w = i(a+z)/(a-z). The buttons 
are located symmetrically with respect to the x- and y-
axes in the z-plane. 
 

The induced potential Vpy(xo,yo) and Vpx(xo,yo) for the 
vertical and horizontal signals may be obtained with 
minus signs in the third and fourth terms, and with minus 
signs in the second and third terms, respectively, in Eq. 
(8). In Fig. 4, (a) and (b) are 3-D plots of Vpy and Vpy/Vps 
for four-button BPMs in the plane of radius ro/a and angle 
θo. Before the normalization, both Vpy and Vps for ro/a > 
0.5 and near θo = π/2 have relatively small values. This 
suggests that for vertical measurement, two-button BPMs 
located at the top (π/2) and bottom (−π/2) in Fig. 3(a) 
would have some advantages compared with Fig. 4. Plots 
of Vpx/Vps for θo from −π/2 to +π/2 give the same results 
as Fig. 4. 

5 INVERTED BPM COEFFICIENTS 
For the measurements of beam positions, xo and yo must 

be expressed in terms of Vx = Vpx/Vps and Vy = Vpy/Vps. For 
the optimized configuration in a small-gap (h = 2.0 mm, 
x1 = 0, and x2 = 4.0 mm), as an example, the inverted 
polynomial coefficients for the BPMs were calculated 
from Eqs. (6), (7), and Vpx(xo,yo) as 

2 2 3(1.960 2.850 ) (1.684 1.057 ) ,
o y x y x

x V V V V= − + +    

2 2 3(1.902 0.162 ) (0.120 0.178 ) ,
o x y x y

y V V V V= − + +    (9) 

for the region 2
o

x < mm and  1.5
o

y < mm. As Fig. 

2(a) predicts, the coefficients for yo were not changed for 
different regions and were relatively small, except for the 
first one. 
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Figure 4: 3-D plot of (a) Vpy and (b) Vpy/Vps calculations 
for four-button BPMs in the circular beam chamber with 
parameters of θp = π/4 and ∆θ = 0.5236 rad. 

6 CONCLUSIONS 
Green’s reciprocity relation for electrostatic problems 

was applied to calculate four-button BPM coefficients in 
simple chamber geometries. It was shown that finding 
induced charges on the buttons due to a charge at a beam 
position is equivalent to finding induced potential at a 
beam position due to given potentials on the buttons. In 
the case of finite-element modeling, only one set of mesh 
geometry is sufficient for the calculations. 
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