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Abstract 
In this paper, a high-precision eigenmode-computation 

analysis of arbitrary azimuthal mode numbers in periodic 
disc-loaded structure based on variational method will be 
discussed. It allows for rounding the edge of a disk hole 
without any approximation in shape treatment and 
calculates the modes exactly synchronous to the beam. It 
converges much faster than the mesh-based computer 
code. Good agreement was observed between the results 
of variational method and those of other methods. 

1 INTRODUCTION 
In the past, various numerical methods were developed 

for the analysis of the higher order modes in a cell[1-4], 
such as KN7C[5], TRANSVRS[6], URMEL[7], 
MAFIA[8], and Ω2[9], SUPERFISH[10]. The codes 
KN7C and TRANSVRS can calculate the longitudinal 
and transverse modes with any phase advance per period, 
though imposing two approximations: an infinite periodic 
structure and a flat beam hole surface parallel to the beam 
axis instead of round edge. Because of the latter 
assumption, the calculated wake field is not accurate 
enough[1]. Though these two codes have been very 
successfully applied to the actual design of structures, 
they need to be further improved if they are to be used for 
cells with a round edge beam hole. This is one of the 
motives for developing the present code. 

On the other hand, such codes as SUPERFISH, 
URMEL, Ω2 and MAFIA can represent the structure by 
filling with a mesh so that these can calculate the modes 
in cells of any shape. However, our method still has its 
advantages in many aspects. The variational method can 
describes the structure geometry without any 
approximation. Therefore it is a better way in the 
geometry treatment than various mesh-based methods. 
The fields in the variational method are given as a series 
expansion, which derives from the Maxwell equations. 
The calculated fields converge on the true ones very fast 
when the number of terms increases. Also, it uses less 
memory than the mesh-based method. The accuracy 
depends on the terms number used.  The frequency 
accuracy is around 10-7 for the acceleration mode of our 
X-band structure with a number of terms more than 55.  One can get a sufficiently accurate calculation by 
increasing the number of terms. Our method can be used 
to calculate both monopole modes and all azimuthally 
varying modes with any phase shift per cell, which means 
that it can calculate all kinds of field in the disk-loaded 

structure (any azimuthal mode, any synchrotron phase, 
any frequency or passpand).  The fields are expressed as 
simple formula. Therefore it can be conveniently used to 
serve as input for other purpose calculation, such as the 
base vectors for equivalent circuit model or open-mode 
expansion model [11].  

The present code is named LONGTRANSVRS. 

2 THEORY 
The theory of variational approach is a well-known 

method and is basically a mathematical forerunner of the 
finite element method. In the classical formulation the 
problem is to find the unknown function or functions that 
extremize (maximize, minimize) or get stationary under 
the specified boundary condition. The fields with steady-

state sinusoidal time dependence of 
tje ω
in vacuum space 

can be found by making the following value minimum 
 ∫ ⋅×= dSZjkJ nEH *

0 )( .             (1)                             

where 
00µεω=k  is the propagation constant, n is the 

unit vector outward normal to the surface S. The 
variational form eq.(1) has no further limitation on the 
trial function on the metal boundary, but the non-metal 
boundary condition should be satisfied by the trial 
function.  

The accelerator structure with which we are concerned 
is a conventional disk-loaded cylindrical waveguide as 
shown in Figure 1. The whole acceleration structure is 
divided into the inner and outer regions, separated at the 
common boundary at r=rc. The inner region is 
characterized by the fact that it has a rounded edge of the 
disk hole as part of boundary surface.  

The Hertz vectors zhh z ,�Π=Π  and zee z ,�Π=Π  are 
chosen to simplify the solution. In the inner traveling 
wave region, the Hertz vectors zh,Π  and ze,Π  take the 
following forms 
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Figure 1    Cross-section of disk-loaded waveguide. 
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where χn
2=k2 −βn

2, βn=β0+2πn/D, β0=φ0 /D. Jm is the first 
kind Bessel function of order m. When χn becomes 
imaginary, the regular Bessel functions can be replaced by 
modified Bessel functions Im of a real argument. The 
above Hertz vectors fulfill the Floquet condition that is 
required by the trial function in eq. (1).  

In the outer standing wave region, we have 
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where the transverse propagation constant Γs
2=k2-αs

2 with 
αs=πs/2g and 

 )()()()()( rYbJbYrJrR mmmmm ΓΓ−ΓΓ=Γ ,      (6) 
)()()()()( rYbJbYrJrS mmmmm ΓΓ′−Γ′Γ=Γ .     (7)  

Here, Ym  is the second kind regular Bessel function of 
order m. The regular Bessel functions Jm and Ym should be 
replaced by modified Bessel functions Im and Km of a real 
argument when Γs is imaginary.   

The field components, which are used as the trial 
functions, can be found from the Hertz vectors (2-5) as 
follows 

he j ΠΠE ×∇−×∇×∇=  0ωµ ,                     (8)                                       

eh j ΠΠH ×∇+×∇×∇=  0ωε  .                    (9) 
Fields given by eqs.(2-3) don't satisfy the metal 

boundary condition. However, fields given by eqs.(4-5) 
do. The metal boundary condition on the iris can be 
satisfied by making function J in eq.(1) minimum.  

We use different trial functions in the outer region and 
inner regions. The fields should be continuous across the 
interface between the two subregions. We can obtain the 
fields matching conditions by equating the two tangential 
components of the magnetic fields at the interface. The 
procedure to make function J in eq.(1) minimum consists 
of substituting the trial functions into the functional and 
thereby expressing the functional in terms of coefficients 
which are the unknowns, such as A, B, C, D in eqs.(2-5). 
The functional is then differentiated with respect to each 
coefficient, and the resulting equation is set to zero.   

It is true that the periodicity theorem, as embodied in 
eqs. (2-3), help us to obtain the waves only for the 
infinitely long structure. If, however, we know the value 
of β0 for each wave, and the proper linear combination of 
the harmonics composing each wave, we can specify 
completely the excitation in a finite structure. We merely 
choose the amplitudes of the various waves so as to match 
boundary conditions at both ends of the structure. 

3 NUMERICAL RESULULT 
The field series should be truncated when we make J 

minimum. Figure 2 shows the value of J around the 

resonant frequency for the case of disk-loaded structure 
with round edge beam hole. All examples used in this 
paragraph have phase 120 degree and structure geometry 
t=5.0013 mm, D=3.50088 mm, b=40.9 mm, a=10.0025 
mm, δ=0.5076 mm, ρ=2.6007 mm. The number of terms 
used in the outer region is 53 (s from 0 to 52) and in the 
inner region 53 (n from �26 to 26). J is normalized by 

∫ dVZZ *
00 ))(( HH . It is shown that J takes minimum value 

at the resonance frequency 2855.9777MHz, which means 
a true field. The truncation errors decrease when the 
number of the field terms increases. The convergence of 
the frequency and field can be estimated from the 
calculated accuracy of the resonance frequency 

ff /∆ and the error of the eigenvector ε : 
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where fn is the calculated frequency using n terms, f∞ is 
the convergence frequency when the number of terms is 
infinite, and En is the eigenfunction obtained from n 
terms. Figure 3 shows the resonance frequency, accuracy 
of frequency and estimated error ε of the first longitudinal 
mode for different numbers of terms in the inner region, 
where 55ff ≈∞ is used for the calculation of ff /∆ . 
Note that the accuracy in figure 3 is not the exact 
accuracy. Nevertheless it shows that the convergence rate 
of the eigenvalue is very rapid. Usually, we choose the 
series term s ranging from 0 to 52 in the outer region and 
n from �26 to 26 in the inner region, which correspond to 
the total number of terms 53 in Figure 3, to reach an 
eigenvalue convergence kk /δ better than 1×10-6. The 
estimated error of the eigenvector also approximately 
decays exponentially with the number of terms. The error 
can reach to 10-6 when n is from �26 to 26. The CPU time 
is mainly decided by the number of terms in the inner 
region. The number of terms in the outer region has little 
effect. We should choose a suitable number of terms in 
order to get accurate results within a short calculation 
time. For the above case, The CPU time needed for 
LONGTRANSVRS to reach within 0.07MHz of its 
convergence is about 96 sec while the CPU time for 
SUPERFISH to reach the same precision is about 4196 
sec using a 500MHz Pentium-III computer.  Figure 4 
shows calculated frequency and CPU time used for the 
SUPERFISH code with different mesh sizes and 
LONGTRANSVRS code with different numbers of terms 
number as in Figure 3.  
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Figure 2   Normalized J vs. frequency 
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Figure 3  Convergence of frequency and field 
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Figure 4  CPU time versus frequencies calculated by the 

SUPERFISH code and LONGTRANSVRS code. 
 

LONGTRANSVRS code gives practically the same 
frequency as TRANSVRS code for a structure with right-
angled beam hole edges. For a structure with t=2mm, 
D=8.7474mm, b=10.779mm, a=4.5mm, φs=0, the first 
dipole mode frequency is 15.9402820364166 GHz by 
LONGTRANSVRS, which is the same as that by 
TRANSVRS within 10-3 Hz. Figure 5 shows the 
convergence of frequency and field for the first dipole 
mode with phase 120°. 
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Figure 5 Convergence of frequency and field (m=1) 

4 SUMMARY AND CONCLUSIONS 
Based on the variational method, a code, 

LONGTRANSVRS was developed which could calculate 
a disk-loaded structure with rounded edge beam hole 
shape. It can calculate all modes in disk-loaded structures 
with high accuracy, which depends on the number of 
terms used. Our method has good convergence and it's 
much faster than SUPERFISH code when the accuracy is 
high. This code provides a powerful tool to design the 
disc-loaded structure, such as searching for structure 
geometry (a or b) with fixed field modes.     
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