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Abstract
In this paper we consider the wakefields induced in pe-

riodic disk-loaded cavities by charged particles of their ve-
locities less than that of light. In frequency domain the par-
ticle velocity dependent wakefields can be calculated by
generalizing the analytical formulae given in ref. 1. The
physical picture of this effect can be drawn as that the fre-
quencies of the excited modes in cavities felt by the parti-
cles are increased by a factor of 1=� (� is the normalized
particle’s velocity). Some examples are given to demon-
strate the utility of these formulae in obtaining the quanti-
ties, such as loss factors, short range and long range wake-
fields as functions of cavity dimension, bunch length, and
particle velocity.

1 INTRODUCTION

The wakefields produced by nonrelativistic charged par-
ticles in accelerating structures is becoming a subject of
research together with the studies of high power proton (or
H�) linear accelerators, such as the facility so-called Ac-
celerator Production of Tritium (APT) [2]. Since the linac
in the high energy part is superconducting type, one is in-
terested in the energy deposited inside the cavities by the
passing particles [3], and also in the wakefields induced
instabilities in the accelerating structures, such as in the
ionization cooling channel of a muon collider [4]. Com-
pared with the wakefields produced by the highly relativis-
tic (� = v=c = 1) charged particles, the wakefields cor-
responding to the nonrelativistic particles are velocity de-
pendent. Restricted to the problem of particle cavity inter-
actions, the physical picture of this effect can be drawn as
that the frequencies of the excited modes felt by the parti-
cles are increased by a factor of 1=�. Having this physical
picture in mind, one can generalize the formalism of the
analytical wakefield calculation for cavities in time domain
with � = 1 to the general case of � � 1 in a rather straight
forward way. In the following sections we will give a set
of analytical formulae to calculate wakefields and some ex-
amples to demonstrate their practical applications.

2 THEORY

We restrict ourselves to the particle-cavity interactions
and treat the wakefield problem in frequence domain. In
this section we generalize the analytical formulae derived
in ref. 1 to calculate the wakefields produced by the par-
ticles with their velocities less than that of light in a disk-
loaded structure as shown in Fig. 1. The delta wakefield
functions of a point charge traversing a disk-loaded struc-
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Figure 1: Disk-loaded accelerating structure

ture can be calculated by using the following formulae:

Wz(� ) =
1X

m=0

1X
n=1

1X
l=0

Wz;mnl(� ) (1)

Wr(� ) =
1X

m=0

1X
n=1

1X
l=0

Wr;mnl(� ) (2)

W�(� ) =
1X

m=0

1X
n=1

1X
l=0

W�;mnl(� ) (3)

where

Wz;mnl(� ) = 2kmnl

� r
a

�m �rq
a

�m
cos(m�) cos(!mnl� )

(4)

Wr;mnl(� ) = 2m
ckmnl

!mnla

� r
a

�m�1 �rq
a

�m
� cos(m�) sin(!mnl� ) (5)

W�;mnl(� ) = �2m
ckmnl

!mnla

� r
a

�m�1 �rq
a

�m
� sin(m�) sin(!mnl� ) (6)

!2mnl = c2

 �umn

R

�2
+

�
l�

h

�2!
(7)

where � = s
�c , s is the distance between the exciting charge

and a test charge, and rq is the transverse coordinate of the
exciting charge. For a Gaussian bunch of charge q one can
calculate the integrated wakefield started from delta wake-
field functions:
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where �t = �z
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. If � � 3�t eqs. 8, 9 and 10 can be replaced
by the following expressions:
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For the mth mode the total loss factor of a Gaussian bunch
will be
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The general expression of the loss factor kmnl correspond-
ing to the mnlth passband [1] is generalized as:

kmnl =
2�hu2mnJ

2
m

�
umn
R a

���
umn
R

�2
+
�
l�
h

�2�
�0D�R4J2m+1(umn)

�

�
S(x1)2 + S(x2)2

4

�
(16)

where
� = f1;m6=0

1=2;m=0 (17)

S(x) =
sin(x)

x
(18)

and

x1 =
h

2�

0
@
 �umn

R

�2
+

�
l�

h

�2!1=2

�
l�

h

1
A (19)

x2 =
h

2�

0
@
 �umn

R

�2
+

�
l�

h

�2!1=2

+
l�

h

1
A (20)

To summarize, one finds that particle velocity � has been
taken into account through � = s

�c
, �t = �z

�c
, and in eqs.

19 and 20.
When � = 1, by setting m = 0, n = 1, and l = 0, one

gets from eq. 16 the point charge fundamental mode loss
factor of a disk-loaded structure as obtained before in ref.
5:
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Obviously when a = 0 and h = D, eq. 21 gives the point
charge fundamental mode loss factor of a closed pill-box
cavity, and when a = R one gets kmnl � 0, which corre-
sponds to a round beam pipe without resistive losses.

What should be kept in mind is that in this paper we
consider the wakefields in stead of wake potential, and that
the wakefields and loss factors have units of V/C/m.

3 EXAMPLES

Equipped with the general analytical formulae derived
above, let’s look at a SLAC-type periodic disk-loaded
structure with a = 1 cm, R = 4:02 cm, h = 2:92 cm,
and D = 3:5 cm with �z = 1 cm. Figs. 2 to 5 shows
the differences of the loss factors, short range longitudinal
and diople mode wakefields, and long range longitudinal
wakefields at the two different particle velocities. More
comparison results can be found in ref. [6].

4 CONCLUSION

In this paper we have generalized the analytical formu-
lae of the wakefields in a periodic disk-loaded structure
(including the closed pill-box cavity) in ref. 1 to the case
where the charged particle’s velocity can be less than that of
light. The advantages of these formulae are that they take
the beam pipe radius into account, that it is very convenient
for them to be included into the cavity design automation
program, such as that under development in Los Alamos
[7] to calculate the particle velocity dependent wakefields
and loss factors in accelerating structures, such as APT-
type structures [8], that they are very efficient to calculate
the wakefields of very short bunch length [9], and that they
can be even used to estimate the wakefields due to beam
pipe surface roughness [10].
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Figure 2: A periodic disk-loaded structure: a = 0:01 m,
h = 0:0292 m, D = 0:035 m, and �z = 0:01 m. The
monopole mode loss factors versus the frequency at (a) � =
1, and (b) � = 0:6.
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Figure 3: A periodic disk-loaded structure: a = 0:01 m,
h = 0:0292 m, D = 0:035 m, and �z = 0:01 m. (a) and
(b) are the Gaussian bunch current distributions of a total
charge of 1 pC. The short range longitudinal wakefields at
(c) � = 1, and (d) � = 0:6.
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Figure 4: A periodic disk-loaded structure: a = 0:01 m,
h = 0:0292 m, D = 0:035 m, and �z = 0:01 m. (a) and
(b) are the Gaussian bunch current distributions of a total
charge of 1 pC. The short range dipole mode wakefields
(r = a) at (c) � = 1, and (d) � = 0:6.
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Figure 5: A periodic disk-loaded structure: a = 0:01 m,
h = 0:0292 m, D = 0:035 m, and �z = 0:01 m. The
long range longitudinal wakefields at (a) � = 1, and (b)
� = 0:6.
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