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Motivation 
Beam Distributions with Beam-Beam Interaction (PEP-II)

¥=t

With a linear matrix or 8th order Taylor map (nx+=0.5125). Nonlinear map is important 
because it defines the dynamic aperture.

The distributions are averaged 
after 40,000 turns to improve
the statistics.

Contours started at value of
peak/sqrt(e) and spaced in e.
Labels are in s of the initial
distribution.

The core distribution is not 
disturbed much by the 
nonlinearity in the ring while
the tail is strongly affected. 

min16=t
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Electron-Ion Collider
• Design luminosity: 1034 cm-2s-1

• Highly polarized beams: 70%
• Hadron up to 275 GeV
• Electron up to 18 GeV

o Electron collider ring
o Rapid cycling synchrotron
o Polarized electron source

A factory that includes not only electrons but also hadrons
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Main Parameters
Parameters Units 600 Lattice (1IR) 900 Lattice (2IR)
Energy GeV 10 18
Circumference m 3834
Emittance nm 24 28
Energy spread 10-4 5.5 9.8
Betatron Tunes 45.12/36.10 52.12/45.10
Chromaticity -83/-91 -106/-110
IP betas m 0.59/0.057
L* m 5.3

• Fractional tunes are selected by the spin dynamics and beam-beam performance
• Their closeness to integer makes chromatic compensation harder
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Design Optics at 18 GeV
• Fits in the RHIC tunnel 

along with the other rings
• 900 FODO cells in arcs
• On-axis injection
• One interaction region in 

the EIC scope
• Asymmetric interaction 

region 

Lattice design is much more demanding because of the large energy range
and the constraints
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Interaction Region
• Asymmetric 
• Low-beta optics 
• Crab cavity 

requires additional 
high-beta regions

• Coupled optics due 
to spin rotators

Interaction region is packed without space for local chromatic compensation
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Dynamic Aperture of the 900

Lattice 

• Use two families of sextupoles in the arcs to correct linear chromaticity to one unit
• Momentum aperture is 0.4% consistent with momentum bandwidth
• Synchrotron radiation included in tracking

wall of chromaticity
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Semi-Local Chromatic Compensation 
Scheme

In each plane:
1) Members in the family add to the beta beating
2) The other family (same sign) cancel the beta beating but add chromaticity
3) Since all beating is in the same phase, a trombone is necessary to align the IR 

beating to the arc

• • 

Interaction region                                                            Arc

Phase trumbone

IP
x

900
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First-Order Chromatic Matching

1) Four variables: strengths of two sextupole families, nx and ny
2) Four goals: bx’, ax’, by’, ay’ setting by the periodic solution between 2IPs
3) Two local chromaticities xx and xy
4) Solutions are found with a downhill simplex optimizer
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Second-Order Chromatic Optics
Forward side of IR6 Rear side of IR8
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1) Local chromaticities are knobs to control higher order chromatic bearings
2) The optimal values of the local chromaticities are obtained by tracking
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Chromatic Optimization of a 
Periodic System

x

IP6                         ARC7                             IP8

trombone

Between IP6 and IP8 are optimized as a periodic 
system

• Increase number of sextupole families from 4 to 8
• Keep two phase trombones
• Minimize chromatic beta beating and chromaticity 

up to the third-order of d 

x
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Chromatic Compensation between 
Two Interaction Points

well be an important ingredient to achieve a larger momentum aperture in the ring. It is

worth noting that the choice of the beamline linear chromaticity also controls the 2nd order

W-functions.

V. CHROMATIC COMPENSATION IN A PERIODIC SYSTEM

Now, we investigate the most critical region from the IP6 to the neighboring IP8, where

twice chromaticities are generated in two halves of the IRs. Naturally, we first consider the

semi-local schemes outlined in the previous section. Here, we use two identical trombones

on each side of the arc and 4 families of sextupoles to match the first-order chromatic optics.

Again, the solutions are parameterized by the two linear chromaticities for the optimization

of the dynamic aperture in the ring. The achieved maximum momentum is 0.8%, slightly

short of reaching our goal of 1%. The shortage is due to the chromaticity walls similar to

the ones shown in the right side plot of Fig. 4.

TABLE III. The nonlinear chromaticities and chromatic beatings at the IPs.

Minimized Parameters 2 Families 8 Families

@⌫x,y/@� -14.57,-16.89 �12.72, �10.48

1
2!@

2⌫x,y/@�2 �6.37 ⇥ 104, �6.35 ⇥ 104 �9.60 ⇥ 10, �1.52 ⇥ 102

1
3!@

3⌫x,y/@�3 �2.02 ⇥ 1011, �2.02 ⇥ 1011 2.45 ⇥ 104, 3.46 ⇥ 103

Wx,y 8.56, 5.90 0.91, 1.44

W (2)
x,y 1.73 ⇥ 105, 1.69 ⇥ 105 38.70, 34.39

W (3)
x,y 5.53 ⇥ 1011, 5.59 ⇥ 1011 3.09 ⇥ 104, 2.25 ⇥ 104

In order to reach the goal, it is necessary to better control of the higher order chromatic

aberrations. We double the number of the variables by splitting the sextupole families at

the middle of the arc 7 (between IR6 and IR8) and using two trombones independently.

Another reason for such choice is to accommodate the asymmetry in the forward and rear

sides of the IRs.

Since the beta functions at the IPs are identical and alpha functions are zero, it is

convenient to optimize chromatic optics of this beamline as a periodical system. The 12

14
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Chromatic Compensation in a 
Periodic System
First-Order Second-Order

0 100 200 300 400 500 600 700
s[m]

0

20

40

60

80

100

120

140

160

180

200

W
 fu

nc
tio

ns

Wx
Wy

0 100 200 300 400 500 600 700
s[m]

0

1

2

3

4

5

6

7

8

Se
co

nd
-O

rd
er

 W
 fu

nc
tio

ns

104

Wx
(2)

Wy
(2)

Regions between 
two solenoids

xx=-12.72, xy=-10.48

Optimized as a periodic system, cancellation between two half IRs
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Chromatic Matching of the Ring
W-Functions Second-Order Dispersions

0 500 1000 1500 2000 2500 3000 3500 4000
s[m]

0

20

40

60

80

100

120

140

160

180

200

W
 fu

nc
tio

ns

Horizontal
Vertical

0 500 1000 1500 2000 2500 3000 3500 4000
s[m]

-400

-300

-200

-100

0

100

200

300

400

fir
st

 d
er

iv
at

iv
e 

of
 

 fu
nc

tio
ns

[m
]

d x/d
d y/d

IP6       IP8

1) The second interaction region doubles the second-order dispersions
2) The paired sextupoles do not generate the second-order dispersions
3) The second-order dispersion drives the synchro-betatron resonance: nx+2ns

Optimized as a periodic system

Matched at first-order of d
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The second-order dispersion is reduced significantly be two sextupoles
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Resonance Correction
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1) 12 harmonic sextupoles in IR2 used in the correction
2) 75% of the zero-out solution is optimal for dynamic aperture
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Hybrid Chromatic Compensation Scheme

1) The strongest sextupoles are in the arc 9
2) Length of sextpoles is 0.7 meter
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Dispersion sextupoles
• 20 chromatic families 

of sextupoles

• Eight phase trombones 

• 2 sextupoles for 
second-order 
dispersion

• 12 harmonic 
sextupoles for the 
third-order resonances

Sextupole Strengths Scheme
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Dynamic Aperture of the 900

Lattice with Two IRs

Mementum aperture is increased to 1.0% Linear chromaticity is set one unit in both 
horizontal and vertical planes
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Conclusion
• A new hybrid chromatic compensation scheme is developed with 

combination of optimization of a periodic system and semi-local 
correction of beamlines

• Second-order dispersion is reduced more than a factor three using 
two sextupoles resulting in a large momentum aperture: 1%

• For the optimization of on-momentum dynamic aperture, it is 
essential to reduce the third-order resonance driving terms

• The semi-local solutions are well understood and parameterized in 
terms of the local chromaticity. Most importantly, the scheme can 
be easily deployed in the online tuning and optimization of the 
collider

• The design criteria of dynamic aperture, namely 10 s in all three 
dimensions, is achieved for the 90-degree lattices with two 
interaction regions
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