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Abstract
High intensity proton pulses strike the Spallation Neutron

Source (SNS)’s mercury target to provide bright neutron
beams. These strikes also deposit extensive energy into the
mercury and its steel vessel. Prediction of the resultant load-
ing on the target is difficult when helium gas is intentionally
injected into the mercury to reduce the loading and to miti-
gate the pitting damage on the vessel. A 2-phase material
model that incorporates the Rayleigh-Plesset (R-P) model
is expected to address this complex multi-physics dynam-
ics problem by including the bubble dynamics in the liquid
mercury. We present a benchmarking study comparing the
measured target strains in the SNS target station with the sim-
ulation results of the solid mechanics simulation framework.
We investigate a wide range of various physical model param-
eters, including the number of bubble families, bubble size
distribution, viscosity, surface tension, etc. to understand
their impact on simulation accuracy. Our initial findings
reveal that using 8-10 bubble families in the model renders a
simulation strain envelope that covers the experimental ones.
Further optimization studies are planned to predict the strain
response more accurately.

INTRODUCTION
The spallation reaction at the Spallation Neutron Source

(SNS) at Oak Ridge National Laboratory involves an in-
tense proton pulse hitting a mercury target to produce the
most intense pulsed neutron beams in the world for scien-
tific and materials discovery [1]. Unfortunately, the first
target station at the SNS experienced frequent premature
failures due to fatigue damage and pitting damage on the
target’s internal walls caused by the mercury cavitation [2,3].
Long-term diagnostics are very difficult because in-place
devices will be damaged by the high radiation around the
target in a very short time. Due to the absence of long-term
diagnostics, high-fidelity modeling and simulation become
important tools to facilitate the target’s fatigue analysis and
to improve the target’s design [4]. The values of digital twins
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of the mercury target have already been demonstrated by
using ABAQUS [5]. However, a discrepancy between the
simulated and measured strain has always been observed,
especially when helium gas is intentionally injected into the
mercury to reduce pitting damage [2, 6].

The injected helium bubbles in the mercury flow can sig-
nificantly reduce the pitting damage on the vessel’s internal
wall and reduce the strain of the surrounding vessel [7–10].
The additional gas phase introduced by the helium bubbles
also converts the mercury fluid into a fluid-bubble mix-
ture. A 2-phase model that incorporates the Rayleigh-Plesset
(R-P) model for the gas phase was developed [11] to incor-
porate the helium bubbles’ dynamic behavior with liquid
mercury. For convenience, the 2-phase model will be re-
ferred to hereafter as the R-P model. As for the R-P model
itself, several physical parameters, such as bubble sizes and
their group distribution, are still difficult to measure directly.
More calibration methods are needed to inversely identify
these physical parameters, or their ranges if possible. There-
fore, improvement of this bubbly mercury model to predict
the target vessel’s dynamic stress/strain under pulsed loads
within a reliable confidence range, becomes important for
the design of current and future targets.

By leveraging the measured strain data for the target with
helium bubbles injected, this research work investigates a
wide range of various physical model parameters including
the number of bubble families, bubble size distribution, vis-
cosity, surface tension, and others to know their impact on
simulation results. Our initial findings are reported in the
following sections.

METHODS
The R-P model was developed to include bubble dynamics

in liquid mercury contained in a flexible structure. However,
the model itself relies on uncertain physics parameters that
cannot be readily determined for the SNS target, and there-
fore must be calibrated with experimental measurement. Di-
rect measurement or observation within the vessel turned out
to be extremely difficult [3]. Instead, strain gauges attached
on the vessel’s external surface [2] have been successfully ap-
plied to monitor target’s dynamic response. Figure 1 shows
some of the sensor locations on the stainless steel vessel’s
external surface. The strong (23.3 kJ) but short (0.7 µs)
proton pulses result in stress/strain waves propagating to the
stainless-steel vessel, which can be measured through the
attached sensors. Measurements of the sensor strains for
2 milliseconds after the pulse delivery under the same pulse
power level (1.4 MW) but different loading cycles have been
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collected and processed as the baseline for validating the
target model simulations.

Figure 1: Target vessel and the sensor locations.

The basic form of the Rayleigh–Plesset equation can be
expressed as [11, 12]:

𝑅 ¥𝑅 = −3
2
¤𝑅2+ 1

𝜌𝐿0
[𝑝𝑏0 (

𝑅0
𝑅
)3𝛾−4`

¤𝑅
𝑅
− 2𝜎
𝑅

−𝑝𝑏0−𝑝], (1)

in which 𝑅 is the radius of the bubble, ¤𝑅 is the time rate of
change of the radius of the bubble, and ¥𝑅 is the time rate of
change of ¤𝑅, 𝜌 is the density of the fluid surrounding the
bubble, ` is the kinematic viscosity of the surrounding fluid,
𝛾 is the adiabatic index of the bubble gas, 𝜎 is the surface
tension of the fluid, 𝑝𝑏0 is the initial pressure of the bubble,
and 𝑝 is normally the real-time pressure far from the bubble
but is used in the R-P model as the pressure in the surround-
ing fluid that contains many bubbles. By simultaneously
solving the coupled equations for an arbitrary number of
bubble families and the surrounding compressible liquid to
conserve pressure and strain, the time-varying bubble radii
and their derivatives can be numerically solved. Each bubble
family represents the number of bubbles per initial volume
that start at the same equilibrium size. Using an arbitrary
number of bubble families allows an actual distribution of
bubble sizes and densities to be approximated. The bubbly
model used in this approach considers only incondensable
helium gas bubbles, and mercury vapor bubbles are not ex-
plicitly modeled in this approach [11].

With this governing approach, the dynamics of the mix-
ture can be integrated into a customized material subroutine
in the Sierra finite element code. However, the real gas bub-
ble distributions are still unknown or difficult to observe
within the steel vessel. Inverse machine learning method
could help optimize some key parameters in the mercury
material model [13], but may also be inefficient or lead to
unsatisfactory model prediction if the method is applied in
physically invalid parameters space. To tackle this issue, this
work investigates a wide range of various physical model pa-
rameters, including the bubble size distribution, the number
of bubble families, mercury kinematic viscosity, mercury
surface tension, helium adiabatic index, and mercury bulk
modulus. A limited number of full target simulations were

performed with these varying model parameters to further
understand their impact on the bubbly mercury target system.

RESULTS

Effect of Bubble Distribution
We investigate the sensitivity of the strain response in the

R-P model with respect to the bubble distribution and the
number of bubble families. Here, the four physical param-
eters are fixed at their nominal value, e.g., bulk modulus
𝐾 = 2.86𝑒+10 Pa, surface tension 𝜎 = 0.47 N/m, adia-
batic index 𝛾 = 1.66, and viscosity ` = 0.0015 N·s/m2.
Our preliminary study shows that right-skewed distributions
(i.e., with mass concentrated on the small bubble size) are
more promising to capture the ground truth distribution of
the bubbles. Several other distribution shapes were inves-
tigated but are not reported here due to space limitation
and un-satisfactory results. Hence, we choose two right-
skewed distributions with different skewness to illustrate the
results. Their corresponding cumulative distribution func-
tions (CDF) are shown in Fig. 2. We use 7 different sets of
bubble families to approximate each distribution, with the
number of families ranging from 3 to 15.

Figure 3 reveals that the sensor A strain response is sensi-
tive to the number of bubble families used to approximate a
bubble distribution. Generally, more families result in higher
peaks. A comparison across the left and right plots shows
that the strain responses from large number of families (10 or
15 members) are less sensitive to the form of the CDF curves
than those from smaller number of families. From this angle,
moderate or large number of families are more advantageous
(however, they also require higher computational cost).

Figure 2: The bubble distributions and their approximations
using different sets of bubble families.

Figure 3: Effect of the bubble distributions and number of
families on the sensor A strain.
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Effect of Physical Model Parameters
We investigate the sensitivity of four physical parameters

𝐾, 𝜎, 𝛾, ` on the strain response in the R-P model. The
bubble distribution is fixed to Distribution 1 (Fig. 2, left)
with 8 bubble families, given that this distribution shows a
better agreement to the experimental data. Figure 4 shows
the effect of changing the parameters on the selected sensor
(A) over a wide range of interest. The variations were evalu-
ated by varying one parameter while fixing the other three
at their nominal values.

The results clearly show that sensor A strain response
is very sensitive to changes in the mercury bulk modulus,
typically with lower modulus leading to higher strain re-
sponse. This sensitivity of the modulus is expected due to
the change in the density and/or speed of sound of mercury,
which have been observed before for the simple equation of
state (EOS) simulations [13, 14]. The other three physical
parameters have negligible impact on the strain response
despite significant changes in their values.

Figure 4: Effect of the four physical parameters on the sensor
A strain: bulk modulus (𝐾), surface tension (𝜎), adiabatic
index (𝛾), and viscosity (`).

Best Case Results
In this paper, we investigated more than 150 simulation

cases, and each simulation takes an average of 20 hours on
256 Intel Xeon 2.30 GHz CPUs. The best simulation that
matches the measured data is plotted in Fig. 5, which cor-
responds to 𝐾 = 3.45𝑒+10 Pa, 𝜎 = 0.47 N/m, 𝛾 = 1.66,
` = 0.0015 N·s/m2, and 8 bubble families with bubble dis-
tribution 1 (Fig. 2, left). The results show that the best case
captures sensors C, D, and E quite well, which is the same
for sensors A, N, and P, but only for the beginning of the
pulse. The simulation tends to overestimate the strain re-
sponse after 0.4 ms, especially for sensors A and N. Current
fatigue analysis of the target design focuses on the damage
from strain range magnitude and does not account for the
time required for these ranges. Therefore, the overestimated
tail strain from the best case should have limited impact
on the evaluation of the target’s fatigue lifetime. The tail

strain discrepancy is also expected to be reduced, if not to-
tally removed, by exploring a wider parameter space in the
future.

Figure 5: Simulated versus measured strain for various sen-
sors for the best R-P simulation case.

CONCLUSIONS
In this work, we have presented a benchmarking study

of the simulation for the liquid mercury target at the SNS
using a proposed 2-phase mercury model that includes bub-
ble dynamics. Our preliminary results indicate that 8-10
bubble families with a monotonic right-skewed distribution
seem to provide the best agreement with the experimentally
measured strain response with helium gas injection. In ad-
dition, the bulk modulus seems to have more impact on the
simulated strain than surface tension, viscosity, and adia-
batic index. Although our simulations seem to provide good
agreement at the beginning of the pulse, a consistent over-
estimation was seen toward the end of the pulse for some
sensors.

Given the results achieved in this study by manual tun-
ing and sensitivity analysis, the next step for the team is
to expand their previously developed surrogate-based tun-
ing methods based on neural networks and polynomial ex-
pansions [14], as well as Bayesian uncertainty quantifica-
tion [13], for a more thorough analysis of the R-P model.
These methods require accurate surrogate models to be
trained, which implies more computing power is needed
to execute the simulations to train the surrogates.
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