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Abstract
To steer the closed orbit in a storage ring through the cen-

ter of its quadrupoles, it is important to accurately know the
quadrupole centers relative to nearby beam position mon-
itors. Usually this is achieved by beam-based alignment
(BBA). Assuming the quadrupole strength can be changed
individually, one finds the BPM reading where changing a
quadrupole’s strength does not alter the closed orbit. Since
most quadrupoles are powered in series, they can only be
varied independently if costly power supplies are added. For
the EIC electron storage ring (ESR), we investigate whether
sextupole BBA can be used instead. Individually powered
sextupole BBA techniques already exist, but most sextupoles
are powered in families and cannot be individually changed.
We therefore developed a method where a localized bump
changes the beam excursion in a single sextupole of a family,
turning off all families that also have sextupoles in the bump.
The bump amplitude at which the sextupole does not cause a
closed orbit kick determines the sextupole’s alignment. This
study was made to investigate the precision to which this
method can be utilized.

INTRODUCTION
The here presented Beam Based Alignment (BBA) pro-

cedure relies on the relationship between the kickers of a
closed 3-bump when an active sextupole is within the bump.
The strength of the kickers behind the sextupole will depend
quadratically on the first kicker in order to close the bump.
An example is shown in Fig. 1 where we model a very short
sextupole to avoid length-effects in the analysis.

Figure 1: Diagram of a sextupole behind the first kicker of a
3-bump.

In an orbital bump with only linear elements and no
sextupole magnets, the kick angles \2 and \3 provided by
the second and third kicker required to close the bump are
directly proportional to the bump amplitude from the first
kicker \1. The formulas for the bump settings using optical
values [2] are provided as follows:
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\2 = −

√︄
𝛽1
𝛽2

sin (𝜓3 − 𝜓1)
sin (𝜓3 − 𝜓2)

\1

\3 =

√︄
𝛽1
𝛽3

( sin (𝜓3 − 𝜓1)
tan (𝜓3 − 𝜓2)

− cos (𝜓3 − 𝜓1))\1 (1)

Where 𝛽 represents the 𝛽-function and 𝜓 represents the
phase functions. The equations from Eq. (1) must change
from linearly proportional to \1 to quadratic when a sex-
tupole is added to the bump as it gives a kick angle, \s
equivalent to:

\s =
1
2
𝐾2𝐿 (𝑥s − 𝑥o)2 (2)

where 𝑥o is the misalignment of the sextupole, 𝐾2𝐿 is the
integrated strength of the sextupole, and 𝑥s is the position
where the beam enters the sextupole which is linearly pro-
portional to \1; \s then depends on \2

1, forcing both \2 and
\3 to have a 2nd order dependence on \1 in order to close
the bump at any bump amplitude.

The only scenario where the bump can still close using
the equations from Eq. (1) is where the beam enters the
sextupole directly through its center, in which case 𝑘s would
be equal to 0. If the kick strengths of the second and third
kicker needed to close the bump were graphed with respect
to the bump amplitude 𝑘1, the intersection point between
the quadratic curve and the linear curve for a bump with
and without an active sextupole, respectively, would occur
at the 𝑘1 value needed to force the beam through the center
of the sextupole as shown in Fig. 2. Because this method

Figure 2: Graph of an example comparison between the
bump settings and amplitude with and without a sextupole.

ensures that throughout the BBA procedure the bump is
always closed, other nonlinear effects around the ring have
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no influence, as the closed orbit around the ring remains
unchanged.

METHOD
The Bmad Library’s Tao program [1] was used for this

study. It closes the orbital bump around the sextupole back
to its original orbit in an open beamline via optimization.
The main focus was to observe that at different bump am-
plitudes, the strength of the second and third kicker depend
quadratically on the first kicker, reflecting the sextupole’s
contribution to the angle of the beam. Two different cases
were studied for this BBA method: Ideal Lattice and Lattice
with Misaligned Elements. The first case has no misalign-
ment errors, causing an initial 0 orbit before a bump is acti-
vated whereas the second case mis-aligns all the magnets on
the level of 50 µm, creating an orbital distortion. For both of
these cases, the BBA method’s level of accuracy was tested
for three orders of BPM reading errors: 0, 1 µm, and 10 µm.
The following steps were applied for each case and level of
error:

• Turn all sextupole families off that have a sextupole
within the bump. Give kicker 1 several kick strengths
that lead to bump amplitudes up to several mm and
close the bump with kickers 2 and 3. This determines
the linear relation 𝑎 = \2/\1 and 𝑏 = \3/\1. The
relationship is linear, because the bump contains no
sextupole strength.

• Turn the three kickers off again and activate the family
of the studied sextupole as strongly as reasonable whilst
keeping all families turned off that also have a sextupole
in the bump. Make sure the studied family has only
one sextupole within the bump. Store the closed orbit
around the ring as a reference.

• Excite various bump amplitudes up to several mm. For
each, close the bump so the orbit remains unchanged
outside the bump region. Record the nonlinear relations
\2 (\1) and \3 (\1).

• For each amplitude \1 repeat the process of bump clos-
ing and the resulting bump strength to increase the
accuracy of \2 and \1. Here we averaged over N = 10
bump closings.

• Observe the quadratic curves and find their intersection
with the linear relations obtained without sextupoles:
\2 (\1) = 𝑎\1 and \3 (\1) = 𝑏\1. At the resulting bump
amplitude, the orbit goes through the center of the sex-
tupole.

Due to the small range of bump amplitudes that can reason-
ably be used for a bump without causing particle loss, the
data, despite obeying a quadratic function, appears linear
to they eye as shown in Fig. 3. To observe the quadratic
behavior of the data, the linear term was subtracted from the
raw data by subtracting 𝑎𝑘1 and 𝑏𝑘1 from the strength of
the second and third kicker, leaving only the quadratic term
that is due to the sextupole. The minimum of the quadratic
curve in Fig. 4 determines the bump amplitude that leads
through the sextupole center, measuring the sextupole offset.

Figure 3: Raw data for the second (and third) kicker com-
pared to the bump amplitude (Ideal Lattice). Data evaluation
shows the second order components that are not visible to
the eye.

Without system errors, the extremum for the second and
third kicker occur at the same bump amplitude. With errors,
there is a discrepancy between the extremum locations.

Figure 4: Fitted Adjusted data with linear term removed
for the second (and third) kicker compared to the bump
amplitude (Ideal Lattice).

RESULTS
Ideal Lattice

The raw and adjusted data with quadratic fits for both the
second and third kicker of an Ideal Lattice after the BBA
method has already been displayed in Fig. 3 and Fig. 4.
No additional figures were provided for each level of BPM
reading error due to looking identical with eachother.

From analytical calculations, the bump amplitude needed
to perfectly force the beam through the center of sextupole
in the Ideal Lattice is \1 = 56.846 µrad.

For the simulation with no BPM reading errors, the ex-
tremum of the fits for the second and third kicker were each
at \1 = 5.6846 µrad, causing errors that were at the level
of 1 pm or essentially 0 m. Significant deviations are only
observed with alignment and BPM errors.

For simulations with a level of 1 µm BPM reading errors
in an ideal lattice, the extremum from the second and third
kicker fits were at \1 = 5.2067 µrad and \1 = 4.6921 µrad,
respectively. This lead to a measurement error from the
second kicker of 4.2 µm and from the third kicker, 8.8 µm.
It can be seen that relatively realistic BPM reading errors
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of 1 µm causes deterioration in the BBA method but still
produces promising results.

For simulations with a level of 10 µm BPM reading errors
in an ideal lattice, the extremum from the second and third
kicker fits were at \1 = 9.3851 µrad and \1 = 11.331 µrad,
respectively. This lead to a measurement error from the
second kicker of 32.5 µm and from the third kicker, 49.1 µm.
Once BPM reading errors reach the level of 10 µm, the BBA
method experiences heavy deterioration in its accuracy.

Lattice with Misalignment Errors
All elements received Gaussian distributed misalignments

with a sigma of 50 µm. Equation 1 leads to a bump amplitude
of 0.339 31 mrad to guide the orbit through the center of the
sextupole. Figure 5 shows the adjusted data with fits that
display the extremum.

Figure 5: Second and third kicker vs. to the bump amplitude
for the Lattice with Misalignments.

For no BPM reading errors, the quadratic fits had ex-
tremum at 0.339 317 mrad and 0.339 352 mrad for the sec-
ond and third kicker, respectively. These bump ampli-
tudes gave misalignment measurement errors of 0.3 µm and
0.1 µm.

For BPM reading errors at the level of 1 µm, the quadratic
fits had extremum at 0.339 307 mrad and 0.339 705 mrad for
the second and third kicker, respectively. These bump am-
plitudes gave misalignment measurement errors of 0.3 µm
and 5 µm. For the lattice with misaligned magnet elements,
the presence of 1 µm BPM reading errors caused less deteri-
oration than the ideal lattice, suggesting a high level of error
fluctuations when BPM reading errors are introduced.

Finally, for BPM reading errors at the level of 10 µm,
the quadratic fits had extremum at 0.336 128 mrad and
0.334 284 mrad for the second and third kicker, respectively.
These bump amplitudes gave misalignment measurement
errors of 37 µm and 75 µm, showing a large discrepancy in
the accuracy of finding the true extrema from the second
and third kickers.

ERROR ANALYSIS
The goal for this Sextupole BBA method is to produce a

sextupole misalignment measurement at an error level below
50 µm to be effective.

The cases of an Ideal Lattice and a Lattice with Misalign-
ment Errors produced errors that were comparable, with the

latter having lower magnitudes and consistency in accuracy
as higher levels of BPM reading errors were introduced. De-
spite this, both cases stayed within the realm of acceptable
levels of accuracy for BPM reading errors as high as 10 µm.

It should be noted that all measurements recorded in the
Results section were for individual trials and the error fluc-
tuates on a case-by-case basis. It can be seen that the case of
no BPM reading errors and 1 µm BPM reading errors caused
identical measurement errors in the Misaligned Elements
lattice from the second kicker fit, suggesting a high level of
variance when BPM noise is introduced.

It can be observed that the third kicker’s quadratic fits con-
sistently produced less accurate bump amplitude extremum
than the second kicker’s. This is likely due the third kicker’s
role of adjusting the change in angle caused by the first and
second kicker, propagating any errors from the second kicker
into the third kicker. Therefore, for the most accurate sex-
tupole measurement readings, only the fit from the second
kicker should be considered.

These errors were minimized by closing the bump with
M = 83 BPM readings and averaging over N = 10 bump
closings. For a closed orbit, a higher number of BPMs, M,
could be used which could even further decrease the influ-
ence of BPM reading errors on the measurement accuracy.
For these simulations done in an open beamline, M was
limited.

Further errors that were not yet investigated in the scope
of this experiment include magnet strength errors and the
propagation of error from not fully closing a bump due to
BPM errors in a closed orbit.

CONCLUSIONS
Modern Sextupole BBA techniques involving the influ-

ence of the sextupole on the beam’s orbit and the 𝛽-functions
exist but deteriorate in accuracy when sextupoles are pow-
ered in families. The here presented Sextupole BBA tech-
nique involving the study of an orbital bump through one
member of a sextupole family was simulated. In an ideal
simulation it determines the offset of a sextupole to machine
precision. However, in a real ring with misalignments and
BPM errors, this BBA method the sextupole alignment can
only be determined with limited precision. Specifically, ran-
dom BPM errors lead to errors in the bump closure, limiting
what can be concluded about kicks in the sextupole. In this
study we analyze BPM errors as high as 10 µm, a realistic
number for modern instrumentation, for both a zero-orbit
Ideal Lattice and non-zero distorted orbit lattice with mis-
aligned BPMs. The Sextupole alignment can be determined
with uncertainty at the level of 30 µm, showing potential
for utilization in the actual ESR ring and other rings with
sextupole families. While this study focused on the ability
to perform this BBA method in an open beamline for sim-
plicity and analytical understanding, future studies involving
closed orbits will be conducted to analyze the accuracy of
this method in a ring with periodic closed orbit.
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