| Paper | Title | Page | 
    
        | TUPA34 | Model-Based Calibration of Control Parameters at the Argonne Wakefield Accelerator | 427 | 
    
        |  | 
                I.P. Sugrue, B. Mustapha, P. Piot, J.G. PowerANL, Lemont, Illinois, USA
N. KrislockNorthern Illinois University, DeKalb, Illinois, USA
 |  | 
    
        |  | Particle accelerators utilize a large number of control parameters to generate and manipulate beams. Digital models and simulations are often used to find the best operating parameters to achieve a set of given beam parameters. Unfortunately, the optimized physics parameters cannot precisely be set in the control system due to, e.g., calibration uncertainties. We developed a data-driven physics-informed surrogate model using neural networks to replace digital models relying on beam-dynamics simulations. This surrogate model can then be used to perform quick diagnostics of the Argonne Wakefield accelerator in real time using nonlinear least-squares methods to find the most likely operating parameters given a measured beam distribution. |  | 
    
    	  | DOI • | reference for this paper 
              ※ doi:10.18429/JACoW-NAPAC2022-TUPA34 |  | 
    
    	  | About • | Received ※ 05 August 2022 — Revised ※ 09 August 2022 — Accepted ※ 10 August 2022 — Issue date ※ 24 September 2022 | 
    
    	  | Cite • | reference for this paper using 
              ※ BibTeX, 
              ※ LaTeX, 
              ※ Text/Word, 
              ※ RIS, 
              ※ EndNote (xml) |  | 
    
        |  |