

Development of a Marx Modulator for FNAL Linac

Trevor A. Butler, NAPAC 2019

4 September 2019

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

Agenda

- 1. FNAL Linac Accelerator
- 2. Modulator Specifications
- 3. Marx Modulator Topology
- 4. FNAL Marx Modulator Design
- 5. Operational Results
- 6. Conclusion

Fermilab Accelerator Complex

🛟 Fermilab

FNAL Linac Accelerator

Radio Frequency Quadrupole (2012) 201.2406 MHz (35 – 750 keV) 1 RFQ, 175 kW Tetrode H- Magnetron Ion Source

<u>Alvarez Drift Tube Linac (1970)</u> 201.2406 MHz (0.75 – 116 MeV) 5 tanks, 5 MW Power Triode Hard-Tube → Marx Modulator

<u>Side Coupled Linac (1992)</u> 804.9624 MHz (116 – 400 MeV) 7 modules, 12 MW Klystron Pulse Forming Network Modulator

FNAL Linac Modulator Specifications

Modulator: Converts AC Mains to pulse the anode of RF Tube

Previous Hard-Tube Modulator

- Energy storage capacitor bank
- Three parallel electron tubes
- Analog feedback control
- Discontinued vacuum tubes

Variable Waveform Shape Requirement

- Modulator Voltage sets RF Power
- RF Drive for phasing only
- Cavity filling & beam loading

Waveform Learning / Feed-forward

- Long term drift of tube & cavity
 Slow Rising Edge
- Take previous gradient error from ~150 μs ideal & apply to next pulse correction

Waveform Real-time Feedback

- Pulse-to-pulse variations in tube & cavity
- Gradient error correction within the pulse

Hard-Tube Modulator & Triode Tube

Beam Step Cavity Filling Overshoot Rising Edge 150 μs Slow Falling Edge ~100 μs Variable Modulator Waveform

New Design Specifications Solid-state Technology Superior reliability & efficiency Small size & lower operational cost Peak Voltage: 35 kV Peak Current: 375 A 15 Hz Repetition: Pulse Width: 460 µs Step Size: < 1500 V Beam Step: 15 kV/µs 50 – 150 µs Rise Time: Fall Time: 70 – 150 µs + 5 kV Beam Tilt: **Regulation:** ± 25 V Spark Energy: < 2 Joules

🛟 Fermilab

4 4 September 2019 Trevor A. Butler | Development of a Marx Modulator for FNAL Linac

Modulator Design Choice → Marx Generator

- Solution → Replace a high powered (linear, high power dissipation) "amplifier" with switch-mode (non-linear, low power dissipation) technology
- Create a high voltage pulse by stacking many lower voltage "Marx" capacitor cells in series
- Marx cells charged in parallel between pulses
- Marx cells fired in series to create the desired pulse
 - Output voltage droops as capacitors discharge
 - Capacitor size determines percentage of droop

Simple 3 Cell Staggered Marx Modulator Waveform

5

FNAL Linac Marx Topology

Requirements of Solid-state Linac Marx Modulator

- Compensate for capacitive voltage droop
- Regulated smooth flattop with feedback (± 25 V)
- Fast beam step slew rate (> 15 kV/µs)
- Slow rising & falling edges (minimize reflected cavity power)

Solution → Create 3 Groups of Marx cells*

41 Main Cells (900 V) → Black

- Create the overall rising and falling edges
- Enabled 900 V incremental beam voltage steps
- Steps small enough to limit accelerating cavity reflected power to acceptable levels for the RF power tube

12 Pulse Width Modulation Cells (900 V) → Blue

- Interleaved & filtered PWM regulator with 7 kV range
- Flatten capacitive droop & regulate flattop voltage via feedback & learning control algorithms

1 Special Cell (0 to 900 V) → Orange

- Independently adjustable charging power supply
- Enables fractional voltage beam step size

Marx Cell Modulator Layout

FNAL Linac Marx Modulator

Fermilab

4 September 2019 Trevor A. Butler | Development of a Marx Modulator for FNAL Linac

7

FNAL Marx Generator Simplified Schematic (5 Cells)

Marx Cell Energy Storage Capacitors

- Power Film Capacitor (639 µF, 1.8 kV)
- 2 Parallel Snubber Capacitors* (5.6 µF, 1.5 kV)

Marx Cell Charge/Fire Solid-state Switches

- Insulated-gate bipolar transistor (IGBT)
- Half-bridge configuration (1.7 kV, 600 A)

Marx Cell Charging Path → RED

- Cells charged during 66.2 ms between pules (99.5% of 15 Hz)
- Fast recovery charging diodes (120 A, 1.8 kV)
- Each cell charged thought previous cell's charging IGBT
- Sequential activation of charging switch's during startup

Marx Cell Firing → GREEN

- Cells firing during 460 µs pulse width (0.5% of 15 Hz)
- Exclusive Or (XOR) interlock separates charging & firing <u>Marx Cell Gate Controls Circuity*</u>
- Convert Fiber-optic commands to IGBT gate pulses
- Sense IGBT desaturation to keep switch in safe operating area

Cells interconnected by parallel plate stripline (< 10 μH) Cells charged by capacitor charging PS (120 Amps, 900 Volts)

Simplified 5 Cell Marx Modulator Schematic

* Note that these components are not shown on schematic

Modulator Pulse Width Modulation

• Multi-function PWM Cells

- Capacitive droop correction (Feedforward)
- Flattop slope (Learning)
- Beam slope / tilt (Beam Learning)
- Pulse-to-pulse corrections (Feedback)
- Pulse Width Modulation Specifications
 - 12 PWM Cells, run at 83.3 kHz (12 μs period)
 - PWM frequency: 1 MHz (1 µs interleaving)
 - − Duty Factor (16.7% to 83.3% \rightarrow 2 µs to 10 µs)
 - 8 Cells (~7kV) of Voltage Range (2 min. to 10 max.)
- Switching losses limit operation to flattop
- Higher frequencies filtered by 2nd order 100 kHz
 "Praeg" low-pass filter (damped & undamped capacitors)
- Undamped Praeg low-pass filter capacitor (0.15 μ F) passes fast slew rate ($\partial V/\partial t$) of main cells
- PWM cells must be located on top row to prevent filter components from disrupting cell charging

Modulator Design Challenges

- Achieve high beam step slew rate $(\partial V / \partial t)$ specification
 - Modulator inductance must be < 10 μH
 - Cells are connected in series via parallel plate stripline -
 - Low inductance construction within individual Marx cells
- Protect Marx cell against effects of tube sparks
 - Limit short circuit current and time
 - 3 kA/μs current rise into spark (assuming 10 μH & 30 kV)
 - Controls not fast enough to turn off switches before overcurrent
 - IGBT's must be individually self-protecting
- Limit spark energy to < 2 Joules
 - Minimize stored energy in Pulse Width Modulation low-pass filter
 - Add energy absorbing resistors on output of the modulator
 - Protect against Marx cell firing IGBT failing to turn off

Marx Modulator design involves making tradeoffs between many factors to create a production design

Low Inductance Stripline Endplates

Low Inductance Marx Cell Connection

Pulse Width Modulation Low-Pass Filter

Modulator Spark Fault Current Limiting

Commercial IGBT Gating Circuit

- Sense desaturation & turns off the gate in a controlled manner to keep device within the safe operating area & avoid destructive turn-off spikes
- Limits the peak short circuit current to < 3 kA peak

Rogowski coil is added to output of each cell

- Rogowski coil is a high speed, low inductance helical coil of wire with no metal core, wrapped around output of Marx Cell, with voltage induced proportional to $\partial I/\partial t$
- Limits spark fault current by triggering a gate voltage clamp
 - High ∂I/∂t output pulse triggers circuit to clamp the IGBT gate command voltage to 12 volts to minimize the Miller effect
- The combined effect of these reduces the modulator short circuit current to < 1.5 kA peak
 - Limits peak $\partial V / \partial t$ to less than $\frac{1}{2}$ of snubber cap max rating during sparks

Short Circuit Test (No Coil)

Short Circuit Test (with Coil)

Marx Cell Row

Rogowski Coil

Modulator Spark Energy Reduction

• RF Power Vacuum Tube limited to < 2 Joules

- Short Circuit Current (< 1 Joule of stored energy)
 - Limited to 1.5 kA maximum current
 - Limited to 8 µs maximum turn-off time
 - Assuming 50 volt spark, below tube spark energy limit
- Undamped filter (5 Joules of stored energy)
 - 2-ohm resistor added in series with output to absorb this energy
- Coaxial RG220 Transmission Line (~ 2 Joules of stored energy)
 - 1.25-ohm resistor added at end of the cable to absorb this energy
- Marx Cell Main Storage Capacitor (300 Joules of stored energy)
 - Special 'ZOV' cell was added at the output of the PWM group of cells
 - 4.5 kV, 1.2 kA IGBT paralleled with a 1.5 kV zinc oxide varistor
 - IBGT Conducts during normal operation, then opens during a spark
 - The ZOV then blocks the voltage of up to two failed Marx cells if they have failed to turn off due to a shorted cell firing IGBT

Individual Marx Cell

Marx Modulator ZOV Cell

Modulator Designs Considered

- Other Marx style switch-mode modulators evaluated
 - Industrial Design → Extensively modify solid-state AM broadcasting transformer coupled modulator (625 V/cell)
 - Accelerator Option → Modified version of the SLAC P2 Marx originally designed for ILC (4 kV/cell), which was not originally designed for real-time feedback control
- No off-the-shelf designs available that meet all specifications without substantial development or modification costs
- FNAL Electrical Engineering Group Design (900 V/cell)
 - Based around challenging specifications
 - Broad local modulator design experience at FNAL
 - Simultaneous testing, installation, & modification capability
 - Previously developed algorithms for learning & feedback control

Basic Transformer Coupled Cell

Modulator Control System

- 162 Fiber-optic cables (fire, charge, & status)
- Analog readbacks (gradient, voltage & current)
- Programable logic controller with touch screen control
- Integrated into local accelerator controls network
- Controlled by a field-programmable gate array (FPGA)
 - Altera Cyclone V MitySOM-5CSx System-on-Modules
 - ARM Cortex-A9 CPU Hard Processor System @ 925 MHz
 - On-board power supplies, flash storage, & memory
 - Linux OS on HPS Core (15 Hz interrupts & application)
- Feedforward & Feedback Controls System
 - Generates reference gradient ramping curve
 - Calculates the voltage required to create curve
 - Compare gradient with reference to calculate both a fast feedback correction & a cycle-by-cycle learned correction
 - Fast gradient error feedback is summed with the learned correction & sent through to the PWM cells (30 kHz BW)
- Control system regulates flattop gradient to < 0.1%!

Fiber-optic Control System

FPGA Controller

Touch Screen Interface

Feedforward Learning

Operational Results

- Installed modulators in staggered stages due to shutdown time constraints
- Noticed substantial improvements in waveform shape & quality
 - Increased slew rate from 2 kV/µs to 15 kV/µs
 - Increased gradient flatness by factor of 2
 - Achieved better than 0.1% pulse to pulse gradient stability with learning & feedback
- Increased RF power triode lifetime
- Improved power efficiency & uptime

Slew Rate Comparison

Gradient Flatness Comparison

Operational Modulator Waveforms

Gradient Stability Comparison 🚰 Fermilab

Conclusion

- Solid-state Marx modulator designed to replace hard-tube design
 - Marx topologies can use traditional power electronics due to lower voltage cells and require less overall capacitance than traditional solid-state designs
 - Superior reliability, decreased physical size, lower component cost, lower operational costs, & increased efficiency

FNAL Marx Modulator topology different from other Solid-state designs

- Flat Long Pulse (SLAC ILC) \rightarrow Internal PWM to each cell to compensate for droop
 - Variable Long Pulse (FNAL) → External filtered PWM for some cells (low speed) & other cells unfiltered with no PWM (high speed)
- Modulator topology capable of creating any desired arbitrary wave shape by performing waveform learning & real-time feedback
- Modulator simultaneously has high slew rate capabilities, can achieve low flattop ripple specifications, all while minimizing energy delivered into a tube spark
- Started by building a 3, 9, & 28 cell prototypes before building 54 cell design
- Successfully updated all 5 modulators by FY 2018 during yearly shutdowns
- Marx Modulator was the final project of the Proton Improvement Plan

FNAL Linac Marx Modulator

Thanks! Any Questions?

17 4 September 2019 Trevor A. Butler | Development of a Marx Modulator for FNAL Linac

FERMILAB-SLIDES-19-049-AD