

Experience and Lessons in FRIB Superconducting Quarter-Wave Resonator RF Commissioning

September 4, 2019

Sang-hoon Kim

On behalf of FRIB team

This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University. Michigan State University designs and establishes FRIB as a DOE Office of Science National User Facility in support of the mission of the Office of Nuclear Physics.

Outline

Introduction

- FRIB linac segment 1 (LS1) with quarter-wave resonators (QWR)
- Performance of QWR cryomodules
 - Accelerating gradients, multipacting, field emission
 - Solenoid, alignment, RF power coupler
 - Phase and amplitude stabilities, beam loading compensation
- Lesson learned from commissioning
 - Stepper motor in slow frequency tuner
 - LS1 operated at 4.5 K
- Summary

Introduction

LS1 Cryomodules

3x (QWR041 Cryomodule: $4x \beta$ =.041 QWRs + 2x 25 cm Solenoids) 11x (QWR085 Cryomodule: $8x \beta$ =.085 QWRs + 3x 50 cm Solenoids) 1x (QWR085 Matching Cryomodule: $4x \beta$ =.085 QWRs)

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science

RF System for QWR Cryomodule

- 2 kW amplifier unit contains 3 RF 'pallets' with their own circulators and dummy loads. 2-way and 4-way combiners are used for up to 4kW or 8kW output power
- LLRF controller supports amplitude and phase lock with active disturbance rejection control and also digital self-excited loop. Tuner control board is integrated in the LLRF controller

8x LLRF controller

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science

RF Commissioning Team Lab-wide supports for efficient RF commissioning

(SRF task leader + 2-3 cavity operators) per shift

H. Ao, WEPLH09

- RF commissioning: 3 11 pm, Linac installation: 8 am 3 pm
- Completed ~1 cryomodule, 8 separate RF systems, per day

Cryomodule RF Commissioning Optimized for this large-scale SRF linac

LLRF integration tests: debug as much as possible before tunnel is secured

	Mode	Details	
Low-level RF integration test (tunnel open)	Amplitude: open Phase: open Slow tuner: on	 Verify LLRF controller, tuner operation, microphonics, as well as cables and connections 	
High-power RF commissioning (tunnel secured)	Amplitude: open Phase: Self-excited loop Slow tuner: disabled	 Check interlocks Verify cavity voltage calibration Condition MP Check FE (and condition if necessary) 	
	Amplitude: locked Phase: locked to clock Slow tuner: on (Real operation mode)	 Check RF feedback and tuner controls Long-term demonstration Verify amplitude and phase stabilities, coupler heating 	

 Most work was on the Control System Studio (CSS) screens, which allows multiple cavity operation by one operator

- Any issues/faults are documented and tracked
- RF parameters and settings are systematically managed H. Maniar, TUPLE01

Accelerating Gradient Achieved the design gradients in all 104 cavities

RF commissioning

• All 104 cavities in LS1 met the specification with 10-20% margins

Beam Commissioning

 Accelerating voltages were chosen as required by the beam » For example, Kr beam: QWR041: 2.0 to 3.6 MV/m, QWR085: 3.6 to 5.9 MV/m

T. Maruta, THZBA3

Field Emission and Multipacting No conditioning effects during beam commissioning

Field emission (FE)

- No remarkable changes from the offline test bunker to the linac
- No measurable changes after cycling of the cryomodule beamline gate valves

Multipacting (MP)

Multipacting bands (in terms of Eacc)

Turn on RF with initial P _{forward}	MP band	QWR041	QWR085
	👈 Low	2-5 kV/m	4-7 kV/m
	Middle	Not observed	0.05-0.08 MV/m
Processed out by	🔶 High	0.6-1 MV/m	0.5-0.9 MV/m
ow conditioning			

W. Hartung, MOPLO17

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Cavity Voltage Calibration RF calibration is roughly consistent with the beam measurements

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

S. Kim, FRIB QWR Commissioning, NAPAC2019 (9/4/2019), Slide 10

Superconducting Solenoid No operational issue

- Solenoid current
 - Linac cryomodule commissioning: tested at 75 A (6.7 T focusing magnetic field, tested to 8 T in the offline cryomodule tests), dipole steering coils were tested at 15 A
 - Beam commissioning: operated at 20-60 A, dipoles were operated at <5 A
- Gas-cooled lid: gas flow controlled by solenoid valves
- All solenoids were reliably operated
 - No solenoid or dipole coil was quenched
 - Controls on the lead voltage and lid-cooling gas flow worked well as optimized

Superconducting solenoid integrated with XY dipole steering coils

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Coldmass Alignment Benefit from bottom up cryomodule design

Coldmass misalignments at 'cold' are within the alignment budget, ±1 mm

Cryomodule	Resonator		Solenoid	
	Horizontal RMS/Max Error (mm)	Vertical RMS/Max Error (mm)	Horizontal RMS/Max Error (mm)	Vertical RMS/Max Error (mm)
β =0.041 (4)	0.12/0.26	0.19/0.52	0.12/0.26	0.05/0.13
β =0.085 (11)	0.26/0.79	0.24/0.72	0.13/0.37	0.11/0.43
β =0.085 Μ(1)	0.07/0.15	0.07/0.13	-	-
β =0.29 (12)	0.32/0.89	0.26/0.	0/0	0/0
β =0 .53 (12*)	0.28/0.71	0.56/0.89	0/0	0/0
β =0.053 M(1)	0.11/0.157	0.11/0.26	-	-

In beam commissioning, only 10% of the design dipole fields were required for correction of argon beam in LS1

80.5 MHz RF Power Coupler No overheating or multipacting

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Amplitude and Phase Stability without Beam Achieved the stability goals with ample margins

Amplitude and phase stability at the full design gradients

- Amplitude tolerance: $\pm 1\%_{pk-pk}$, measured errors: < $\pm 0.1\%_{pk-pk}$
- Phase tolerance: $\pm 1^{\circ}_{pk-pk}$, measured errors: $< \pm 0.2^{\circ}_{pk-pk}$

Amplitude and phase errors in selected LS1 cavities (measured using FPGA with ~100 kHz bandwidth)

Amplitude and Phase Stability with Beam The stability is preserved even with the pulsed beam

- High-peak-current pulsed beam in the commissioning
 - Peak current 130 µA: 1/3 max design current
 - Pulse length 6 ms: comparable to the cavity RF filling time 8 ms
 - Repetition rate: 5 Hz
- Stabilities are almost preserved with the pulsed beam
 - Pulsed beam mode would be useful for future beam power ramp up: pulsed mode
 - Only feedback control was used

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science

Transient Beam Loading Voltage Compensated By RF Feedback Control

Pulsed Waveform in 50 ms

Forward RF power, P_{forward}

Facility for Rare Isotope Beams

Reliability of Cavity Operation

- A few to several trips per 15 hour shift in the whole LS1
 - Main source: tuner stepper motor, which was fixed after the beam commissioning
 - One cavity not used: potential microphonics/resonance control issue, under investigation
- No conditioning effects happened in the cavities/couplers during beam commissioning

Mitigation of the Tuner Stepper Motor Issue

- Issue: sudden jump of the tuning plate when it starts to move, especially changes direction; not a typical backlash (in terms of range) or mechanical deadband
- Possible cause: loose force when accelerated (no encoder in stepper)
- Solution: replaced with a higher torque stepper motor

Nb tuning plate +

J. Popielarski,

Stepper motor

Resonance Control Performance at 4.5 K 80.5 MHz QWRs were stable at 4.5 K

- Pool boiling effect is negligible: with -2 to -5 Hz/Torr df/dp, <8 W wall dissipation power, 40 Hz bandwidth in QWR085
- Microphonics resonant with the cavity mechanical mode: managed not to be excited
- Slow tuner: moves a few times per hour with on-off control with the hysteresis band

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science

Summary

- LS1 cryomodules with 104 QWRs have been commissioned
 - Achieved the design gradient, amplitude and phase stability
 - Provided stable SRF operation for the beam commissioning to achieve 20.3 MeV/u ion beams
- Next step: commission 24 cryomodules containing 168 322 MHz Half-Wave Resonators
 - 13 cryomodule have been cooled down (as of 9/4/19), LLRF integration tests have been started

Acknowledgements

- FRIB ASD: J. Wei, A. Facco, Y. Yamazaki, M. Ikegami
 - SRF: T. Xu, J. Popielarski, W. Hartung, W. Chang, K. Saito, M. Xu, C. Zhang, H. Ao, J. Schwartz, S. Miller, C. Compton, L. Popielarski, K. Witgen
 - RF: D. Morris, S. Zhao, H. Maniar, T. Larter, E. Gutierrez
 - Cryogenics: F. Casagrande, R. Ganni, M. Thrush, P. Knudsen, N. Hasan
 - Accelerator Physics: P. Ostroumov, A. Plastun, T. Maruta, T. Yoshimoto, Q. Zhao, T. Zhang
 - Operations: G. Machicoane, H. Ren, C. Morton, J. Stetson
 - Controls: L. Hodges, M. Konrad, E. Daykin, S. Beher
 - Beam Instrumentation and Measurement: S. Lidia, J. Crisp
 - Power Supply: R. Bliton
 - And the whole FRIB project team
- Collaborations
 - Argonne National Laboratory
 - Jefferson Lab

Talks/Posters Related to FRIB LS1 QWR Commissioning

- MOPLO17: Walter Hartung, "Large-Scale Dewar Testing of FRIB Production Cavities: Results"
- MOYBB4, MOPLO16: Cong Zhang, "Large-Scale Dewar Testing of FRIB Production Cavities: Statistical Analysis"
- **TUPLE01:** Harsh Maniar, "Python Application for RF Commissioning at FRIB"
- WEPLM03: Shen Zhao, "The LLRF Control Design and Validation at FRIB"
- WEPLM73: Wei Chang, "Bunker Testing of FRIB Cryomodules"
- WEPLH09: Hiroyuki Ao, "FRIB Driver Linac Integration to Be Ready for Phased Beam Commissioning"
- WEPLM70: John Popielarski, "FRIB Tuner Performance and Improvement"
- WEPLM71: Mengxin Xu, "Thermal Performance of FRIB Cryomodules"
- THZBA3: Tomofumi Maruta, "Status of Beam Commissioning in FRIB Driver Linac"
- WEPLM62: Kellen McGee, "First Cold Test Results for a Medium-Beta 644 MHz Superconducting 5-cell Elliptical Cavity for the FRIB Energy Upgrade"

