

NAPAC2019

NORTH AMERICAN PARTICLE ACCELERATOR CONFERENCE

Nonlinear Tune-Shift Measurements in the Integrable Optics Test Accelerator Sebastian Szustkowski, Sasha Valishev, Nikita Kuklev, Sasha Romanov, Swapan Chattopadhyay 09/03/2019

Research supported by DOE GARD and NIU Accelerator Cluster Funds (NIU: Swapan Chattopadhyay, PI and Bela Erdelyi, Co-PI) & (NIU: Swapan Chattopadhyay, PI)

Northern Illinois University

Acknowledgments

Northern Illinois University S. Chattopadhyay

Fermilab

K. Carlson, D. Crawford , N. Eddy, D. Edstrom, J. Eldred, S. Nagaitsev, J. Santucci, A. Romanov, A. Valishev

University of Chicago N. Kuklev

Outline

- Integrable Optics Test Accelerator (IOTA) Overview
- Special Elliptic-Potential Magnet
 - Calibration
- Measurements
 - Small Amplitude Tunes
 - Amplitude Dependent Tune Map
- Run 2 Outlook and Conclusion

Integrable Optics Test Accelerator

- IOTA is currently the only testbed for NL Integrable Optics using electron and proton beams
 - Nonlinear Elliptic Magnet from Danilov-Nagaitsev
 - Octupole String for Quasi-Integrable Henon-Heiles System
 - Electron Lens for Integrable Optics
- Other IOTA Experiments**:
 - Single-Electron Storage, understanding quantum effects
 - Electron Lens for space-charge compensation
 - Optical Stochastic Cooling for bright electron beams
- Over 20 University and Industry Collaborators

** See A. Romanov talk tomorrow WEXBA2

Parameter	Value		
Perimeter	39.97 m		
Momenta	50-200 MeV/c		
<i>p_{e-beam}</i> , design	150 MeV/c		
p_{p-beam} , design	70 MeV/c		
Electron current	1.2 mA		
Proton current	10 mA		
RF frequency	30 MHz		
RF voltage	1 kV		
v_x, v_y, v_s	$(0.3, 0.3, 5.7 \times 10^{-4})$		
τ_x, τ_y, τ_s	(2.0, 0.7, 0.3) s		
$\epsilon_{x}, \epsilon_{x,ycoupled}, RMS$	(96.3, 25.3) nm		
$\Delta p/p$, RMS	1.26×10^{-4}		

5 S. Szustkowski - 2019 NORTH AMERICAN PARTICLE ACCELERATOR CONFERENCE

Implementation Into An Accelerator

Start with a linear focusing accelerator with equal horizontal and vertical optics.

- The linear optics can be built with standard optics, but must have a n- π phase advance, "T-insert"
- Drift region L, matched beta function (L=1.8m in IOTA)

Hamiltonian should be time-independent in normalized coordinates and introduce a 'new' time, which is the betatron phase

$$H_N = \frac{(p_{xN}^2 + p_{yN}^2)}{2} + \frac{x_N^2 + y_N^2}{2} + U(x_N, y_N, \psi)$$

Add a nonlinear potential U(x,y,s) in the drift region

Elliptical Potential

- Find a potential that satisfies the Laplace equation, and is separable in some variables and has a second integral of motion that is quadratic in momentum
- First studied by Gaston Darboux in 1901, yielded to the Bertrand-Darboux partial differential equation:

$$xy(U_{xx} - U_{yy}) + (y^2 - x^2 + c^2)U_{xy} + 3y_x - 3xU_y = 0$$

• A general solution satisfying the equation:

$$U(x,y) = \frac{f(\xi) + g(\eta)}{\xi^2 + \eta^2}$$
$$f_2(\xi) = \xi \sqrt{\xi^2 - 1} [d + t \operatorname{acosh}(\xi)]$$
$$g_2(\eta) = \eta \sqrt{1 - \eta^2} [b + t \operatorname{acos}(\eta)]$$

To have lowest multipole expansion term to be a quadrapole: d=0, b = $\frac{\pi}{2}$ t t is then the nonlinear potential strength

V. Danilov and S. Nagaitsev, Phys. Rev. ST-AB 13, 084002 (2010)

Nonlinear Magnet

- Magnet and Vacuum chamber designed and manufactured by RadiaBeam Technologies
- Used stretched wire method to measure and align the center of the 18 magnets individually
- Magnetic center is to within ±50 um

Nonlinear Magnet

fast.fnal.gov

V. Danilov and S. Nagaitsev, Phys. Rev. ST-AB 13, 084002 (2010)

A. Romanov

Verification

- Used beam based Orbit Response Measurement
 - Alignment is good up to 100um
- Powered individual magnets for a tune response measurement
 - Fitted calibration strength coef. NL Calibration

Tune Measurements

- Kicked a 100 MeV electron beam vertically from 0.3kV to 4.8kV
- Changed strength of nonlinear magnet to t = 0.21, 0.29, 0.43
- Calculated tunes via FFT algorithm from data collected via 21 Beam Position Monitors (BPM) around the ring

Amplitude Dependent Tune Map, t=0.22

Amplitude Dependent Tune Shift, t = 0.22

Parameter	Meas.	Aperture Restriction	Model
Max Kick [kV]	4.80	3.39	4.80
Max Kick Ang. [mrad]	3.43	2.43	3.43
Max Amp at NL [mm]	4.48	3.18	4.48
DR-Restriction [mm]	6	6	10

Amplitude Dependent Tune Map, t=0.29

Amplitude Dependent Tune Shift, t = 0.29

Parameter	Meas.	Aperture Restriction	Model
Max Kick [kV]	3.00	4.68	5.18
Max Kick Ang. [mrad]	2.14	2.28	3.71
Max Amp at NL [mm]	2.98	2.73	5.19
DR-Restriction [mm]	6	6	10

Kick Angle [mrad]

Amplitude Dependent Tune Map, t=0.43

Amplitude Dependent Tune Shift, t = 0.43

Parameter	Meas.	Aperture Restriction	Model
Max Kick [kV]	2.4	2.4	4.0
Max Kick Ang. [mrad]	1.71	1.71	2.86
Max Amp at NL [mm]	3.65	3.65	5.19
DR-Restriction [mm]	6	6	10

Road Bumps

- Mechanical Restrictions
 - DR straight beam pipe has a ~6mm misalignment
 - Planning to fix this during shutdown
 - By design the smallest restriction should be at the middle of nonlinear magnet, 5.5mm vertically
 - Beam measurements indicate an unexpected restriction of 6mm in DR straight section
- T-insert transfer map must be precise, up to 1%

Summary and Outlook

- Measured tunes in good agreement with MAD-X Simulation
- Largest observed tune shift of ΔQx = 0.0261±0.0017 and ΔQy = 0.0530±0.0018
 - At larger strength value of t=0.48, simulation shows a tune shift of **ΔQy** ≈ 0.11
- Next Run will have ring improvements, allowing further exploration of the dynamic aperture
 - Realignment
 - Fix DR beam pipe
 - BPM Improvements
 - Additional sextupoles
 - Use both the horizontal and vertical kicker
- Further studies in understanding beam loss from previous run needs to done

Thank you

Please check out other contributions

- A. Romanov, "Recent Results and Opportunities at the IOTA Facility".
 WEXBA2
- I. Lobach, "Study of Fluctuations in Undulator Radiation in the IOTA Ring at Fermilab" THYBA5
- J. Eldred, "Physics Studies for High Intensity Proton Beams at the Fermilab Booster" THZBA1
- S. Nagaitsev, "Review of Recent Advances in Cooling Techniques"
 FRXBA1
- J. Jarvis, "Optical Stochastic Cooling Program at Fermilab's Integrable Optics Test Accelerator" TUPLM21
- N. Kuklev, "Experimental Studies of Single Invariant Quasi-Integrable Nonlinear Optics at IOTA". TUPLM08

