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o Motivation

e Nanosecond RF-power switch development

e High resolution spectrometer development
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THz Accelerating Structures e e

» Advantages of operating at THz frequencies

e Shunt impedance increases as /2
For the structures with a similar shape

e RF breakdown rate is lower for the same EM-field amplitudes at
higher frequencies
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SLAC 100 GHz 200 MV/m Structure* sy i Pes

OAVSYSTEMS

e The structure is open, made of two separate metal blocks

* The two halves are placed together, with a gap between,
forming an open accelerating structure

* The structure was excited by the FACET ultra-relativistic
electron bunch
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gap

BOTTOM Coupler cell |—|

1 mm
HALF Coupler iris

output horn

* More details in M. Dal Forno et al., Phys. Rev. Accel. Beams 19, 051302, 2016; M. Dal Forno et al., Phys. Rev. Accel. Beams

19, 011301, 2016; M. Dal Forno et al., Phys. Rev. Accel. Beams 19, 111301, 2016; M. Dal Forno et al., Nucl. Instrum. Methods
Phys. Res A 864, 12 (2017); M. Dal Forno et al., Phys. Rev. Accel. Beams 23, 09131, 2018;
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RF Breakdowns tests at FACET $.$ rodiobeam

* RF breakdowns limit the accelerating gradient
» Breakdown rate scales with peak fields and pulse length

2
AT = Hinax v tpulse Emaxsotpulse

o8 mp'c.k BDR

* For 200 MV/m structures @ 100 GHz, the pulse length should
be limited to <10 ns

Breakdown rate measurements: travelling Observation of Damage: travelling wave Cu 100 GHz structure
wave Cu-Ag 100 GHz structure (Nov 2015)
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* More details in M. Dal Forno et al., AIP Conference Proceedings 1812, 060011 (2017)
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External Power Source . e

e RF sources limited in mm-wave range

e MIT 1 MW gyrotron oscillator at 110 GHz with up to 3 us
pulses and frequency tunability

Gate|
Gun valve
coll_

| | Superconductingmagnet | ________ * More details in Tax, David S.,
et al. IEEE Transactions on
Plasma Science 41.4 (2013):
862-871.

gun |} ( oSI2<]

Cavity  Launcher

RadiaBeam role:

1. To develop a switch to reduce the input pulse
duration to 1-10 ns level

2. To develop a spectrometer for RFBD detection

2019/09/05 Nanosecond rf-Power Switch for Gyrotron-Driven Millimeter-Wave Accelerators



. | | .
Outline Yoy

e Motivation

» Nanosecond RF-power switch development

e High resolution spectrometer development
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Laser-gated THz Switch ey ibeam

* In order to selectively shorten the long pulse generated by the
gyrotron, it is possible to implement light-controlled
semiconductor shutters via the photoconductive effect

— Brewster angle ~ 74 degrees

3 LT-GaAS
| Wafer
T w

8 ns

8 ns

Photoconductive

Reflected

* Drude-Lorentz model analysis indicated 90% threshold for the
power reflection coefficient with 532-nm laser at intensity
levels of 800 W/cm? for Si and by 2 kW/cm? for GaAs.

* More details in S. Kutsaev et al., Phys. Rev. Appied 11, 034052 (2019)
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THz Switch Design e e

» THz Switch assembly was developed at RadiaBeam and
installed at MIT Plasma Science and Fusion Center (PSFC)

3 US  THz from Input THz window
L_ gyrotron Polarizer
THz lens no. 1
Wafer

THz lens no. 2

THz lens no. 3

Mirror

THz lens no. 4

9. Output THz window
10.THz load

11.Optical lens

12.Laser dump

13.Beam expander

14. Alignment mirror no. 1
15. Alignment mirror no. 2
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Switch Characterization

&¥¢ qdiabeam
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* We measured the losses inside the switch components

Power source

Input window
Polarizer

Lens 1

Wafer (Cu)

Output window (Si)
Output window (Cu)

220
209
182
210
135
50
72

n/a
95%
82%
95%
61%
22%
32%

» Transmitted signal as a function of laser parameters
e Power after expander =2 mJ
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Experimental Setup e e

* The spectrometer was installed at MIT to experimentally
define its power and time characteristics

* More details in E. Nanni et al. in Proceedings of 9th International Particle Accelerator Conference, Vancouver, Canada, (2018),
p. 1224.
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Switch Tests with Gyrotron ey ibeam

* We increased the power from O to 600 kW (max available) and
measured the signal with the Schottky detector

e This power will produce an accelerating gradient above 200
MV/m in a SLAC W-band accelerating structure

e The FWHM of the GaAs reflecting mode is about 12-15 ns, while
the FWHM of the silicon is about 6 us,

e The rise time of both wafers is about 3 ns.
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Variable Pulse Width S becn

» Two silicon wafers (long decay time) will be turned on with an
adjustable delay time to vary the pulse length

Wafer 1
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e Motivation

e Nanosecond RF-power switch development

* High resolution spectrometer development
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Single-Shot Spectrometer e e

* With a heterodyne approach, it is possible to down-convert the
frequency from 110 GHz to 1 GHz range, digitize and apply
FFT decomposition
e The frequency range is defined as Sampling rate / 2
e The frequency resolution as 1/Pulse length

* |Q modulation is needed to detect if the signal frequency is
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oscillator, 6 — Schottky amplitude detector.
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Breakdown Studies . e

e We have done real-time shot-to-shot measurements over the
10 minutes

e Pulse width, frequency bandwidth and shot-to-shot spectra are
measured

| Mirror breakdown
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Spectrometer Upgrade S becn

* We will replaced SAGE components with a PCB board with a
RadiaBeam-build f/2 source based on anti-parallel diode pair
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NeXt Steps 'l’ SYSTEMS

» Complete the development of the 2-wafer variable pulse
length switch

» Test, debug and install PCB-based heterodyne downconverter

* Develop real time inexpensive and compact DAQ system (so far
we’ve been reliant on 12 GHz scope for signal readout..)

* Finally, characterize the breakdown dynamics of SLAC
structure at MIT
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