

Nanosecond rf-Power Switch for Gyrotron-Driven Millimeter-Wave Accelerators*

> Alex Murokh Sergey Kutsaev

> September 5, 2019

* This work was supported by the U.S. Department of Energy, Office of High Energy Physics, under contract DE-SC0013684

Motivation

Nanosecond RF-power switch development

High resolution spectrometer development

THz Accelerating Structures

- Advantages of operating at THz frequencies
 - Shunt impedance increases as $f^{1/2}$
 - For the structures with a similar shape
 - RF breakdown rate is lower for the same EM-field amplitudes at higher frequencies

SLAC 100 GHz 200 MV/m Structure*

- The structure is open, made of two separate metal blocks
- The two halves are placed together, with a gap between, forming an open accelerating structure
- The structure was excited by the FACET ultra-relativistic electron bunch

* More details in M. Dal Forno et al., Phys. Rev. Accel. Beams 19, 051302, 2016; M. Dal Forno et al., Phys. Rev. Accel. Beams 19, 011301, 2016; M. Dal Forno et al., Phys. Rev. Accel. Beams 19, 111301, 2016; M. Dal Forno et al., Nucl. Instrum. Methods Phys. Res A 864, 12 (2017); M. Dal Forno et al., Phys. Rev. Accel. Beams 23, 09131, 2018;

RF Breakdowns tests at FACET

- RF breakdowns limit the accelerating gradient
- Breakdown rate scales with peak fields and pulse length

 For 200 MV/m structures @ 100 GHz, the pulse length should be limited to <10 ns

External Power Source

- RF sources limited in mm-wave range
- MIT 1 MW gyrotron oscillator at 110 GHz with up to 3 μs pulses and frequency tunability

* More details in Tax, David S., et al. IEEE Transactions on Plasma Science 41.4 (2013): 862-871.

RadiaBeam role:

- 1. To develop a switch to reduce the input pulse duration to 1-10 ns level
- 2. To develop a spectrometer for RFBD detection

Motivation

Nanosecond RF-power switch development

High resolution spectrometer development

Laser-gated THz Switch

 In order to selectively shorten the long pulse generated by the gyrotron, it is possible to implement light-controlled semiconductor shutters via the photoconductive effect

 Drude-Lorentz model analysis indicated 90% threshold for the power reflection coefficient with 532-nm laser at intensity levels of 800 W/cm² for Si and by 2 kW/cm² for GaAs.

* More details in S. Kutsaev et al., Phys. Rev. Appied 11, 034052 (2019)

THz Switch Design

 THz Switch assembly was developed at RadiaBeam and installed at MIT Plasma Science and Fusion Center (PSFC)

- 1. Input THz window
- 2. Polarizer
- 3. THz lens no. 1
- 4. Wafer
- 5. THz lens no. 2
- 6. THz lens no. 3
- 7. Mirror
- 8. THz lens no. 4
- 9. Output THz window
- 10. THz load
- 11. Optical lens
- 12. Laser dump
- 13. Beam expander
- 14. Alignment mirror no. 1
- 15. Alignment mirror no. 2
- 16. Alignment mirror no. 3
- 17.532 nm laser

Switch Characterization

• We measured the losses inside the switch components

Location	Schottky, mV	transmission, %
Power source	220	n/a
Input window	209	95%
Polarizer	182	82%
Lens 1	210	95%
Wafer (Cu)	135	61%
Output window (Si)	50	22%
Output window (Cu)	72	32%

- Transmitted signal as a function of laser parameters
 - Power after expander = 2 mJ

Non- uniform beam density

Experimental Setup

 The spectrometer was installed at MIT to experimentally define its power and time characteristics

* More details in E. Nanni et al. in Proceedings of 9th International Particle Accelerator Conference, Vancouver, Canada, (2018), p. 1224.

Switch Tests with Gyrotron

- We increased the power from 0 to 600 kW (max available) and measured the signal with the Schottky detector
 - This power will produce an accelerating gradient above 200 MV/m in a SLAC *W*-band accelerating structure
 - The FWHM of the GaAs reflecting mode is about 12-15 ns, while the FWHM of the silicon is about 6 μ s,
 - The rise time of both wafers is about 3 ns.

Variable Pulse Width

 Two silicon wafers (long decay time) will be turned on with an adjustable delay time to vary the pulse length

Motivation

Nanosecond RF-power switch development

High resolution spectrometer development

Single-Shot Spectrometer

- With a heterodyne approach, it is possible to down-convert the frequency from 110 GHz to 1 GHz range, digitize and apply FFT decomposition
 - The frequency range is defined as Sampling rate / 2
 - The frequency resolution as 1/Pulse length
- IQ modulation is needed to detect if the signal frequency is lower or higher than LO

1 – 30-dB horn antenna, 2 – Band-pass filter, 3 – Directional coupler, 4 – IQ-mixer, 5 – Local oscillator, 6 – Schottky amplitude detector.

Breakdown Studies

- We have done real-time shot-to-shot measurements over the 10 minutes
 - Pulse width, frequency bandwidth and shot-to-shot spectra are measured

Spectrometer Upgrade

 We will replaced SAGE components with a PCB board with a RadiaBeam-build f/2 source based on anti-parallel diode pair

- Complete the development of the 2-wafer variable pulse length switch
- Test, debug and install PCB-based heterodyne downconverter
- Develop real time inexpensive and compact DAQ system (so far we've been reliant on 12 GHz scope for signal readout..)
- Finally, characterize the breakdown dynamics of SLAC structure at MIT

Project Team

- RadiaBeam Systems, LLC
 - Sergey V Kutsaev, Alexander Smirnov, Bryce Jacobson, Marcos Ruelas, Joshua Condori, Dmitriy Shchegolkov, Alex Murokh
- SLAC National Accelerator Laboratory
 - Emilio Nanni, Valery Dolgashev, Massimo Dal Forno
- MIT
 - Julian Picard, Samuel Schaub
- LogicWare Inc.
 - Vladimir Goncharik
- This work was supported by the U.S. Department of Energy, Office of High Energy Physics, under SBIR contract # DE-SC0013684