High Brightness CW Electron Beams From Superconducting RF Photoinjector

> Irina Petrushina Stony Brook University

September 2, 2019

Electron Ion Collider – eRHIC

) < (~

- 1 Coheren electron Cooling Proof of Principle Experiment
- 2 Brief overview of existing SRF photoinjectors
- (3) 113 MHz SRF photoinjector: design, challenges and performance
- **4** Conclusions and future plans

Coherent electron Cooling: Proof of Principle Experiment

SRF photoinjectors—challenging, but rewarding creations

Pros:

- \bullet Good vacuum inside Nb cavity at $2{\rm K}/4{\rm K}$
- Relatively high accelerating gradients
- CW operation

Cons/Questions:

- Are high-QE cathodes compatible with SRF?
- Can high-QE cathodes survive in an SRF cavity?
- How to keep cathodes at room temperature without causing multipacting (MP)?
- How to get to operational voltage without causing MP and killing cathode?
- Dark current?
- Cryopumping?

It is expensive and challenging—hence, there are very few operational SRF guns!

Overview of existing SRF photoinjectors

Parameter	CeC PoP	FZD^1	HZB^2	NPS^3	UW^4
Cavity type	QWR^*	Elliptical	Elliptical	QWR	QWR
Number of cells	1	3.5	1.4	1	1
RF frequency, MHz	113	1300	1300	500	200
LiHe Temperature, K	4	2	2	4	4
Beam energy, MeV	1.25 - 1.5	3.3	1.8	0.47	1.1
Charge per bunch, nC	10.7	0.3	0.006	0.078	0.1
Beam current, μA	150	18	0.005	< 0.0001	< 0.1
Dark current, nA	<1	120	-	$<\!20,\!000$	< 0.001
$E_{\text{cath}}, \text{MV/m}$	10-20	5	7	6.5	12
Photocathode	$\mathrm{CsK_2Sb}$	Cs_2Te	Pb	Ni	Cu

*QWR—Quarter Wave Resonator

113 MHz SRF gun with warm CsK₂Sb photocathode

• Operating temperature: 4 K

Laser

Cross

- Room temperature CsK₂Sb photocathode
- Photocathode QE lifetime: 1-2 months
- CW operating voltage: 1.25 MV
- 4 kW CW solid state power amplifier

Fundamental Power Coupler (FPC)/ Frequency Tuner

- Fundamental RF power coupling and fine frequency tuning is accomplished via a coaxial beam pipe and the beam exit port.
- With the travel of ± 2 cm, the tuning range is ~6 kHz. Rough tuning is accomplished manually via mechanical linkages outside the cryomodule.
- The center conductor and RF windows are water-cooled. The outer conductor copper coated bellows are air-cooled.
- The center conductor is gold-plated to reduce heat radiated into the SRF cavity.

Cathode Stalk Design

- The cathode stalk is a hollow center conductor of the coaxial line formed by the stalk and the cavity. ۰
- The stalk is shorted at one end and is approximately half wavelength long. ۲
- A quarter-wave step from the short creates an impedance transformer \rightarrow reduces RF losses in the ۲ stalk from ~ 65 W to ~ 25 W. The gold plating reduces radiation heat load from the stalk.
- ٠

Controlling cathode recess \rightarrow initial focusing of the beam

Irina Petrushina (SBU)

Multipacting: good agreement between the predictions and experiment

CST Particle Studio

ACE3P (Track3P)

Multipacting Well Studied and Understood

Example of Cavity Turn On Attempt with Strong MP

- Lengthen period between attempts from ~ 20 min to ~ 40 min $\Rightarrow 5^{\text{th}}$ attempt = successful turn on.
- Cathode QE not impacted by turn on attempts as MP related vacuum activity is kept minimal.

- Four repeated attempts to turn on result in getting stuck at 22 kV MP barrier.
- Attempts last only 20 ms, controlled by LLRF MP trap code.
- Prevents significant energy deposition ⇒ vacuum activity which would kill cathode QE.

Initial QE map: June 7, 2018

QE map: June 9, 2018

Irina Petrushina (SBU)

QE map: June 11, 2018

Irina Petrushina (SBU)

September 2, 2019 14 / 20

QE map after 1 month of operation

Irina Petrushina (SBU)

Unexpected and Exciting Results: Very Low Transverse Emittance

Normalized emittance for a	100 pC , 400 ps e-beam
Projected emittance, mm-mrad	0.30
Slice emittance, mm-mrad	0.15

Normalized emittanc	e for a	600	pC,	400	ps e-bean	n
---------------------	---------	-----	-----	-----	-----------	---

Projected emittance, mm-mrad	0.57	
Slice emittance, mm-mrad	0.35	

Transverse emittance from our SRF gun satisfies the requirements for a CW X-Ray FEL!

Emittance Measurements for a variety of settings during 2017-2018

Irina Petrushina (SBU)

- We have demonstrated the record parameters for the SRF CW gun:
 - Normalized emittance as low as 0.35 mm-mrad for a 600 pC bunch was measured.
 - Relative energy spread 3×10^{-4} was demonstrated.
- Photocathode at room temperature has high QE
- Low frequency of the gun allows to generate electron beams close to conditions in a DC gun, and fully utilize available field gradient
- Good vacuum inside the SRF gun provides for a long lifetime of the cathode
- Quality of the beam is surprisingly good and we plan to improve our diagnostics to measure ultimate performance of our SRF gun with CsK₂Sb, Na₂KSb and CsTe coated GaAS photocathodes
- We are submitting proposals to demonstrate 100 mA CW current from our SRF gun

Special thanks:

- CeC team: V.N. Litvinenko, I. Pinayev, G. Wang, Y. Jing, J. Ma, K. Shih, Y.H. Wu
- LLRF group: G. Narayan, F. Severino, T. Hayes, K. Smith
- J. Tuozzolo¹, J.C. Brutus¹, S. Belomestnykh³, C. Boulware², C. Folz¹, T. Grimm², P. Inacker¹, D. Kayran¹, G. Mahler¹, M. Mapes¹, T. Miller¹, T. Rao¹, J. Skaritka¹, Y. Than¹, E. Wang¹, B. Xiao¹, T. Xin¹, A. Zaltsman¹.
- ¹ Brookhaven National Laboratory, Upton, NY, USA
- 2 Niowave Inc., Lansing, MI, USA

 3 Fermilab, Batavia IL, USA

References

- A. Arnold et al. "A high-brightness SRF photoelectron injector for FEL light sources". In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 593.1 (2008), pp. 57–62.
- M. Schmeißer et al. "Results from beam commissioning of an SRF pluggun cavity photoinjector". In: (2013).
- [3] J.R. Harris et al. "Design and operation of a superconducting quarterwave electron gun". In: *Physical Review Special Topics-Accelerators and Beams* 14.5 (2011), p. 053501.
- [4] J. Bisognano et al. "Wisconsin SRF Electron Gun Commissioning". In: Proc. NAPAC'13 (2013), pp. 622–624.
- [5] Vladimir N Litvinenko and Yaroslav S Derbenev. "Coherent electron cooling". In: *Physical Review Letters* 102.11 (2009), p. 114801.