

Large-Scale Dewar Testing of FRIB Production Cavities: Statistical Analysis

Cong Zhang, Walter Hartung, John Popielarski, Kenji Saito Sang-hoon Kim, Wei Chang, John Schwartz, Ting Xu

NAPAC2019, 02 September 2019

This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University. Michigan State University designs and establishes FRIB as a DOE Office of Science National User Facility in support of the mission of the Office of Nuclear Physics.

FRIB SRF Cavities: Overview

Cavity Parameters					
Туре	QWR	QWR	HWR	HWR	
β	0.041	0.085	0.29	0.53	
f _o (MHz)	80.5	80.5	322	322	
$< E_a > (MV/m)$	5.1	5.6	7.7	7.4	
$< E_{pk} > (MV/m)$	30.8	33.4	33.3	26.5	
<b<sub>pk> (mT)</b<sub>	54.6	68.9	59.6	63.2	
E _{pk} /E _a	6.1	6	4.3	3.6	
$B_{pk}/E_a (mT/(MV/m))$	10.8	12.4	7.7	8.6	

Number of Cavities						
Needed 12+4=16 92+8=100 72 148						
Certified	16	100	75	141		
Completion	100%	100%	100%	95%		

Total Cavity Requirement: 336 Data analyzed based on: 332

- Resonators made from sheet Nb (RRR>250): deep drawing and electron beam welding
- Jacketed resonators delivered to FRIB by vendors
- Final preparation steps at MSU:
 - borescope inspections
 - bulk etching (BCP 120 μm)
 - hydrogen degassing (600°C x 10 hr)
 - light etch (BCP 20 μm)
 - high-pressure rinsing: robotic system
 - Indium seal for QWR bottom flange, copper gasket for all ports
 - no low-temp bake

Design criteria example:

 B_{pk} (@ op. Ea) < 70 mT, ASAC recommendation

W. Hartung, MOPLO17

NAPAC2019, C. Zhang, Slide 2

Outline

- **1. Dewar test**
- 2. Thermal Quench, MP, FE and Q-slope in FRIB SRF cavities
- 3. SRF material parameter statistics for FRIB cavities
- 4. Summary

Dewar test for FRIB Cavities

- ~1 hour cooling down from RT to 4.3 K
- 4.3 K:
 - Q₀ vs. E_{acc}
 - MP conditioning
 - Cooling from 4.3 to 2K:
 - Q₀ vs. T
- 2K:
 - $Q_0 vs. E_{acc}$
 - FE conditioning

Specification and Achievements at 2 K

	E _{acc} (spec-VTA) / Achieved (MV/m)	Q ₀ (spec-VTA) / Achieved
QWR-0.041	5.6 / 10.5 ± 0.7	1.4E9 / 5.7 ±0.7E9
QWR-0.085	6.1 / 9.1±0.3	2E9 / 4.0 ± 1.0E9
HWR-0.29	8.5 / 12.6 ± 0.6	6.7E9 / 1.4 ± 0.2E10
HWR-0.53	8.1 / 12.0 ± 0.6	9.2E9 / 1.9 ± 0.3E10

- SRF cavities exceed the FRIB requirements
- Performance margin = factor of 2 on average

Performance Limits for FRIB Cavities: Overview

Limitation	FRIB Status
Thermal Breakdown	 mostly good 5 out of 332: thermal breakdown below E_a goal (<2%) 74 out of 332 (~20%): thermal breakdown, E_a > 10 MV/m
Multipacting	 most cavities have MP, but can condition conditioning times tolerable (< 2 hr/test) conditioning times vary from cavity to cavity
Field Emission	 mostly good some reworks to reduce X-rays (~10%) most cavities have x-rays <100 mR/hr at design field
High Field Q-slope	 good for present FRIB goals may need to do better for FRIB energy upgrade

Multipacting

Barrier Type	QWR-0.041	QWR-0.085	HWR-0.29	HWR-0.53	
Low	0.002-0.005 MV/m jump over and avoid	0.004 - 0.007 MV/m jump over and avoid	NA	NA	
Middle	NA	0.06 - 0.09 MV/m	0.05 - 0.3 MV/m	0.03 - 0.2 MV/m	
High (2 pt-1 st at short plate)	0.6 -1 MV/m	0.5 - 0.8 MV/m	2.6 - 4.2 MV/m	2.2 - 4 MV/m	
Post high	NA	NA	5 - 7 MV/m	4 - 5 MV/m	
conditioning time	<2 hours/test (Dewar test; faster if variable coupler) (<30 mins in cryomodule, over-coupled EPC)				

(<30 mins in cryomodule, over-coupled FPC)

MP middle barrier in QWR

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science

Michigan State University

2pt-1st MP at short plate

NAPAC2019, C. Zhang, Slide 6

Thermal Breakdown

Thermal Breakdown: mostly good for FRIB spec.

Туре	Number Tested	Thermal breakdown (< gradient goal)	Notes
QWR-0.041	16	0	 6/16 (40%) thermal breakdown at ~10.5 MV/m (spec: 5.1 MV/m) Surface/EBW defect
QWR-0.085	100	0	 9/100 (10%) thermal breakdown at ~10 MV/m (spec: 5.6 MV/m) Surface/EBW defect
HWR-0.29	75	2 (2%)	 24/75 (30%) thermal breakdown at ~13 MV/m (spec: 7.7 MV/m) Surface/EBW defect
HWR-0.53	141	3 (2%)	 35/141 (25%) thermal breakdown at ~12 MV/m (spec: 7.4 MV/m) Surface/EBW defect

Field Emission: needed re-preparation 10%

Туре	Number Tested	Number of FE reworks	Reasons	
QWR-0.041	16	2 (~13%)	Contamination particles and scratches on surface	
QWR-0.085	100	9 (~8%)	Contamination particles and scratches on surface	
HWR-0.29	75	7 (~10%)	Contamination particles, not optimized HPWR, residual acid	
HWR-0.53	141	22 (~16%)	Contamination particles, not optimized HPWR, residual acid	

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science

Michigan State University

High Field Q-slope

- Pure high field Q-slope (HFQS) without X-rays: often observed in each FRIB cavity family
 - typical phenomena for BCP cavities, post-etch baking cannot help
 - physical mechanism still not so clear

Onset of HFQS: B_p~85 mT

- For the future FRIB energy upgrade to mitigate HFQS:
 - EP + low temp. bake
 - new BCP recipe

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

FRIB Production SRF Parameters Statistics

- R_s vs 1/T fit (at low field) provides material information
- 3-parameter BCS fit:

$$R_{S} = C_{RRR} R_{1} \frac{\left(\frac{\Delta}{\kappa_{B}}\right)}{T} \left(\frac{f}{f_{1}}\right)^{2} \exp\left(-\frac{\Delta}{\kappa_{B}}\right) + R_{res}$$

Туре	f _o (MHz)	Number counted	C _{RRR}	∆/к _в (K)	R _{res} (nΩ)
QWR-0.041	80.5	10	1.36±0.21	14.91±0.87	2.21±0.69
QWR-0.085	80.5	38	1.49 ±0.36	14.25±1.79	4.12±1.40
HWR-0.29	322	57	1.88±0.22	18.40±0.66	3.75±0.97
HWR-0.53	322	82	1.84±0.17	18.26±0.40	3.32±0.92

- QWR data complication: tuning plate RF contact not always perfect
- HWR data: no RF contact issues, so results more indicative of intrinsic properties
 - Energy gap consistent with BCS theory
 - Residual resistance $3\sim4$ n Ω , of which ~1 n Ω can be explained by residual magnetic field in the Dewar

Summary

- FRIB linac requires large-scale production of superconducting for QWRs and HWRs, ~350 cavities total.
- Dewar testing provides statistics data on production resonator performance
- FRIB cavities meet the performance goals (accelerating gradient, quality factor) with a factor two margin on average
- Performance is limited by thermal breakdown (2%), field emission (10%), high-field Q slope (50%)
- For future large scale projects with more ambitious field goals, HFQS is a concern if BCP used

Thank You For Your Attention!

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University