FINAL DESIGN OF THE **APS-UPGRADE STORAGE RING** VACUUM SYSTEM Advanced Photon Source Upgrade

NORTH AMERICAN PARTICLE ACCELERATOR CONFERENCE

Jason Carter on behalf of the APS-Upgrade Storage Ring Vacuum System Design Group

APS-U & VACUUM SYSTEM REQUIREMENTS

- APS-Upgrade project: 6 GeV, 200 mA multi-bend achromat retrofit to existing 1.1 km circumference storage ring
- Pre-installation: 40x total sectors each broken down into 5x modules of magnets, vacuum chambers & supports
- Installation with 1 year APS dark time: 6 month tunnel installation + conditioning

DESIGN OF VACUUM COMPONENTS

63 custom arc vacuum components per sector

- 19 NEG-coated chambers
- 14 BPMs w/ 2-sided bellows
- 5 photon absorbers
- 4 aluminum 'L-bend' chambers with antechambers
- 2 SST keyhole chambers
- 2 cross chambers

• Vacuum conditioning: achieve 2 nTorr average total pressure @ 200 mA by 1000 A*hrs

Advanced Photon Source at Argonne National Laboratory, Lemont, IL USA

Existing 318 mm wide APS storage ring chamber compared to new APS-U chamber

Developing design of typical APS-U sector

INTERFACES & DESIGN CHALLENGES

Magnets: ~1 mm clearance between poles Vacuum chambers must pass strict go/nogo gauges

15 extraction line chambers & bellows

NEG-coated vacuum chambers

- Typically built around aluminum or copper extruded tube with 22 mm ID
- Outboard water cooling channel
- Tube heater in c-shaped inboard channel
- Downstream 'inline absorber' shadowing flange joints and BPMs
- Inconel chambers passing through corrector magnets
- NEG-coating 2 copper keyhole shaped chambers

Fubular Heating Element

Typical NEG-coated Inconel vacuum chamber

Typical NEG-coated aluminum vacuum chamber

Single piece RF-sealing gaskets

- Demonstrated dual vacuum seal and RF seal on vacuum cross and Goubau line and recent NSLS-II in-ring tests
- Extending to keyhole designs
- Photon absorbers with bellows
- Bellows based alignment of critical crotch absorber edges
- CuCrZr for high heat load absorbers up to 3.4 kW

Installation: limited access to joints, BPMs

 QCF chain clamps where possible for ease of installation

Accelerator physics: minimize losses due to impedance

- Single piece RF sealing gasket within compact flange joints
- Vacuum crosses designed with machined pumping liners
- Photon absorbers with subtle transitions

Shadowing uncooled components:

- Water-cooled vacuum chambers with internal absorbers to shadow BPM/bellows & flange joints
- Ray tracing assuming misalignment & missteering

Beam position monitor (70 mm) & chamber supports

Top cross section of typical APS-U vacuum sequence

Custom RF sealing copper gaskets test on Goubau line and in-ring installations

Beam position monitors

- Design improvements through prototyping lessons learned
- Recent in-ring tests at NSLS-II demonstrated button readings and met vacuum but heated at 100 mA due to RF liner being out of contact
- Follow-up in-ring tests coming at APS (September 2019) to correct installation
- Working on hard-stops to guide travel during bakeout growth and ensure RF contact

CuCrZr crotch absorber with bellows for alignment

August 2019 NSLS-II in-ring test of APS-U prototype BPM

VACUUM SYSTEM CAD MODELING

'Skeleton' approach to 3D CAD modeling

- Simplified models capture critical details, allow for efficient high level assembly analysis
- All APS-U groups participate in approach
- Skeleton models embedded within

FUTURE WORK

- September 2019 APS inring test of APS-U BPM
- Turning final designs into procurements

3D CAD ray trace highlighting APS-U crotch absorber

Adaptable ray trace built off skeleton assemblies

- 20 vacuum components intercept synchrotron radiation projected from 29 unique 'sub-arcs' of **APS-U MBA lattice**
- Stronger understanding of complex photon load distributions across chambers and absorbers
- QA and vacuum certification of production vacuum equipment
- Begin pre-installation of full APS-U modules in Summer 2020
- Mockup installation of first articles of all components

Top and front views of typical APS-U module

ACKNOWLEDGMENT

Argonne National Laboratory's work was supported by the U.S. Department of Energy, Office of Science under contract DE-AC02-06CH11357.

Special thanks to APS-U Storage Ring Vacuum Design team: Bran Brajuskovic, Brian Billett, Herman Cease, John Hoyt, Mark Lale, Austin McElderry, Oliver Mulvany, Maria O'Neill, Ralph Swanson, Kevin Wakefield, Dean Walters, Greg Wiemerslage, John Zientek

U.S. DEPARTMENT OF Argonne National Laboratory is a ENERGY U.Š. Department of Energy laboratory managed by UChicago Argonne, LLC.