FINAL DESIGN OF NEG-COATED ALUMINUM VACUUM CHAMBERS & STAINLESS STEEL KEYHOLE VACUUM **CHAMBERS FOR THE APS-U STORAGE RING** Advanced Photon Source. Argonne National Laboratory, Lemont, IL

Austin McElderry, Brian Billett, Jason Carter, Kevin Wakefield

- sectors)

Stainless Steel Keyhole Vacuum Chambers

- 316LN stainless steel for strength & low magnetic permeability
- Internal copper plating
- Ø22 mm aperture with photon extraction antechamber, 300 mm – 350 mm long
- Two chambers per sector

Stainless steel keyhole vacuum chamber

FINAL DESIGN

Aluminum NEG-Coated Vacuum Chambers

Challenges: developed vacuum chamber to intercept synchrotron radiation with adequate cooling & in-situ bakeouts with compact

- mm

Keyhole chamber (left) and aluminum chamber (right) within quadrupole magnets

RAY TRACING

- Ray tracing layout created with CAD skeleton model – system approach to adjust heat loads & shadowing
- Ability to determine heat load footprints & flexibility to adjust design parameters with automatic updates
- Results verified with SynRad & Matlab analysis
- 0 160 W/m heat densities for aluminum chambers
- 98 W (8.1 W/mm² heat flux) maximum heat load incorporating missteering for aluminum pumping cross

Ray tracing through one of the aluminum chambers with an inline photon absorber (bottom) and a photon extraction chamber (top)

Ray tracing through the two keyhole vacuum chambers

interfaces

- Prototypes: built for the storage ring sector mockup; design changes after the prototype phase to address developing design interfaces
- Synchrotron Radiation: inline photon absorber machined into downstream flange stub to shadow flange joints & BPMs
- **Cooling**: water channel along the outboard side for heat management with compact welded water tube joints
- In-Situ Bakeout: electrical heating rods fitting into inboard channels
- Space Constraints:
 - Thin-wall extruded chamber body
 - Quick ConFlat (QCF) flanges utilize chain clamp; minimal axial space between magnets
 - Explosion-bonded bimetal flange stubs (SST/AI)

Stainless Steel Keyhole Vacuum Chambers

- Challenges: developed vacuum chamber to allow photon extraction, strong cross section to prevent collapse with compact magnet & beam envelope interfaces, in-situ bakeout, passive cooling
- Space Constraints & Preventing Collapse: ø22 mm aperture with extended antechamber

Heating Channel / ubular Heating Element Stub

Aluminum chamber cross-sectional overview (left) and bimetal absorber flange stub (right)

Aluminum pumping cross cross-sectional overview

 Stainless steel keyhole aperture designed to allow synchrotron radiation to pass through without incidence

Upstream (left) & downstream (right) beam envelopes for the keyhole chambers

FINITE ELEMENT ANALYSIS

Setup & Challenges

- Evaluated designs under operating conditions, bakeout, & buckling
- FEA geometry split along the beam footprint with a series of partitioned bodies to control mesh quality along the beam heat load
- Synchrotron radiation heat flux imported along the beam footprint & turbulent flow based convective heat transfer coefficient for water cooling
- Atmospheric pressure applied to external surfaces, water pressure applied to water channels, & positional constraints

- Balance between strength, magnet clearance, & beam envelope clearance
- Buckling analysis performed
- Wire EDM body from 316LN SST plate
- In-Situ Bakeout: electrical heating rods fitting into inboard & outboard channels
- **Cooling**: water channel along the outboard side & internal copper plating to reduce induced heat loads

SST keyhole chamber cross-sectional overview

CONCLUSION

The chambers presented is this paper have gone through extensive design, analysis, review, and bidding processes. APS-U is confident with the expected performance of these components. Future work for these projects include the procurement, fabrication, assembly, and installation process. Components are expected to arrive Summer 2020.

ACKNOWLEDGMENT

Argonne National Laboratory's work was supported by the U.S. Department of Energy, Office of Science under contract DE-AC02-06CH11357.

Aluminum NEG Cross Results

 Maximum temperature (83.7°C) & maximum stress (46.3 MPa) occurs along the inline photon absorber

Stainless Steel Keyhole Results

 No synchrotron radiation heat load, maximum stress is a singularity, high stress along wall in the middle of chamber body (135 MPa)

Sliver half model used for buckling analysis, critical load found to be 328 atm

Argonne National Laboratory is a U.Š. Department of Energy laboratory managed by UChicago Argonne, LLC.

