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Corrections for capacitative pick-ups for non-relativistic effects

Dispersion reduction - theory

Non-relativistic beams are not pancaked longitudinally.

« Standard analysis does not account for non-relativistic

effects to simplify results.
 The different field extents affect the measurements
Corrections for non-relativistic effects
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* Analytic: Iyeqm (@) = Iyan(w) - I (ﬁ)

« Simulation: simulate response of device to
non-relativistic beams
Want benchtop test stand for measuring effects

« Test stand must replicate field profile and velocity of beam

Helical transmission lines can be used
« They propagate pulses at low phase velocities
* Need to understand impedance and dispersion
for use In test stand
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Impedance - theory

* Impedance calculated from fields found using the sheath helix approximation

* Impedance calculated in two regions

« Z Inner: between helix and inner conductor, solid line

« Z outer: between helix and outer pipe, dashed line
« Z Inner ~ Z outer except at low frequency

Low frequency limit Z « €,

Smaller separation reduces variation in impedance

Other changes to the geometry are minimal compared to the separation

* Require constant separation, helix and inner conductor radii can vary
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Impedance - simulation

Previous geometry — helix in a pipe
« Significant dispersion caused pulses to quickly deform
* No reasonable method found to correct pulses
Improved geometry — add inner conductor
* Reduces phase velocity at low frequency, does not change high frequency limit
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Varying separation between helix and inner conductor
« Smaller separations reduce the variation of the phase velocity with frequency
* Results in slower deformation
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Dielectric constant scaling
* Require dielectric layer between inner conductor and helix to support the helix
* The high and low frequency limits change at different rates with € r
« Can set £ rto make high and low frequency limits the same, but this isn’t practical and
variations of the phase velocity due to a higher € _r can be reduced by using a small

separation
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« Impedance measured with frequency domain simulations
 Input and output matched with microstrip line

« Set microstrip impedance to low frequency helix impedance
 Attach ground to inner conductor of helix and the microstrip to the helix
« Resistor between pipe and helix to match external fields at end of transmission line

. S,,<-150dB,S,, >-2dBupto2 GHz o

S-Parameters [Magnitude in dB]

1 1 1 1 1
I e e e e e e e o =1 O !

"""""""""""""""""""""""""""""""""""""""""""""

* Resonances due to system length 45 T T D A A AAAT — s

"""""

35 17

1 1 1 1 1
1 1 1 1 1 1
N - - - - I- - --I-- =T T- - --I - - - - - - - I--------I-------I----- -
_¢1Ei RS NN RPN SN WU e YT RN N R N N [ T D JE
1 1 1 1 1 1 1 1

""""""""""""""""""

25 J e AR AT

...................................................................

55 A
« Determine impedance from Sy,
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* Resistive L-network between helix and microstrip to damp out resonances

—1\ —1
* Zholix = (Rs‘h1 + [Zmicm Trsn. + R] ) , Ry, IS shunt resistor, R IS series resistor

* Real part of impedance agrees within 3% up to 2 GHz
« Simulation gives reactance not predicted by theory. Reactance is small enough to be

ignored for matching in current studies
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Dispersion reduction - simulation

Time domain simulations performed in CST microwave studio
The pulse at the pipe was measured along the transmission line
* Pulses converted to frequency domain

- Phase at two probes used to calculate phase velocity, v, (f) = L

b2—P1

L is probe separation, ¢; is the i*® probe
* Results agree with theory up to 750 MHz where noise starts to dominate

Pulse propagation FT amplitude
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