Helical transmission line test stand for non-relativistic **BPM calibration**

C. Richard, Michigan State University, East Lansing, MI, USA S. Lidia, Facility for Rare Isotope Beams, East Lansing, MI, USA

Corrections for capacitative pick-ups for non-relativistic effects

- Non-relativistic beams are not pancaked longitudinally.
 - Standard analysis does not account for non-relativistic \bullet effects to simplify results.
 - The different field extents affect the measurements
- Corrections for non-relativistic effects
 - Analytic: $I_{beam}(\omega) = I_{wall}(\omega) \cdot I_0\left(\frac{\omega R}{\beta v c}\right)$
 - Simulation: simulate response of device to \bullet non-relativistic beams
- Want benchtop test stand for measuring effects •
 - Test stand must replicate field profile and velocity of beam \bullet
- Helical transmission lines can be used
 - They propagate pulses at low phase velocities \bullet
 - Need to understand impedance and dispersion

Dispersion reduction - theory

- Previous geometry helix in a pipe
 - Significant dispersion caused pulses to quickly deform
 - No reasonable method found to correct pulses
- Improved geometry add inner conductor
 - Reduces phase velocity at low frequency, does not change high frequency limit

for use in test stand

Impedance - theory

- Impedance calculated from fields found using the sheath helix approximation
- Impedance calculated in two regions
 - Z_inner: between helix and inner conductor, solid line \bullet
 - Z_outer: between helix and outer pipe, dashed line \bullet
 - Z_inner ~ Z_outer except at low frequency
- Low frequency limit $Z \propto \epsilon_r^{-0.5}$
- Smaller separation reduces variation in impedance
- Other changes to the geometry are minimal compared to the separation
 - Require constant separation, helix and inner conductor radii can vary

- Varying separation between helix and inner conductor
 - Smaller separations reduce the variation of the phase velocity with frequency
 - Results in slower deformation

- Dielectric constant scaling
 - Require dielectric layer between inner conductor and helix to support the helix
 - The high and low frequency limits change at different rates with ε_r
 - Can set ε_r to make high and low frequency limits the same, but this isn't practical and variations of the phase velocity due to a higher ε_r can be reduced by using a small separation

1.0 mm

 $0.7 \,\mathrm{mm}$

0.5 mm

0.3 mm

0.1 mm

65

Impedance - simulation

- Impedance measured with frequency domain simulations
- Input and output matched with microstrip line
 - Set microstrip impedance to low frequency helix impedance
 - Attach ground to inner conductor of helix and the microstrip to the helix
 - Resistor between pipe and helix to match external fields at end of transmission line S-Parameters [Magnitude in dB]
 - $S_{11} < -15 \text{ dB}, S_{21} > -2 \text{ dB up to } 2 \text{ GHz}$
 - Resonances due to system length

- Determine impedance from S_{11}
 - Resistive L-network between helix and microstrip to damp out resonances

•
$$Z_{helix} = \left(R_{sh}^{-1} + \left[Z_{micro}\frac{1-S_{11}}{1+S_{11}} + R\right]^{-1}\right)^{-1}$$
, R_{sh} is shunt resistor, R is series resistor

- Real part of impedance agrees within 3% up to 2 GHz
- Simulation gives reactance not predicted by theory. Reactance is small enough to be ignored for matching in current studies

Frequency (GHz) dielectric constant

Dispersion reduction - simulation

- Time domain simulations performed in CST microwave studio
- The pulse at the pipe was measured along the transmission line
 - Pulses converted to frequency domain
 - Phase at two probes used to calculate phase velocity, $v_p(f) = \frac{Lf}{\phi_2 \phi_1}$ •
 - L is probe separation, ϕ_i is the i^{th} probe
 - Results agree with theory up to 750 MHz where noise starts to dominate

MICHIGAN STATE IVERSITY

