

Design of a 200 kV DC Cryocooled Photoemission Gun for Photocathode Investigations

Gevork S. Gevorkyan,^{1,*} Jared M. Maxson,² William H. Li,² Luca Cultrera,²

Alice Galdi,² Ivan V. Bazarov,² and Siddharth Karkare¹

¹Arizona State University, Tempe, AZ 85287, USA ²Cornell University, Ithaca, NY 14853, USA

*E-mail: Ggevorky@asu.edu

Arizona State University

Introduction

- **Intrinsic emittance** of photocathodes limits the electron **beam brightness produced** from photoemission guns.
- Compared to their polycrystalline counterparts, single crystalline ordered surface materials can produce an order of magnitude improvement in intrinsic emittance at cryogenic temperatures.

Electrostatics Calculations

Poisson calculation of the electric fields at the spherical electrode:

- Cathode surface fields are ~76% of the max field magnitude E_{max}.
- Field ratio is comparable to the Cornell's DC Cryogun

Cu(100): 4 meV

- Existing electron guns aren't designed for single crystal photocathodes.
- In this work we report on the design of a 200 kV DC cryocooled electron gun, based off the Cornell DC cryogun, which
 - can use the omicron paddle-shaped photocathode holder enabling easy a) cathode characterization in standard surface science instruments,

Alkali-Sb: 20+ meV

- allows for a large flexibility in terms of the cathode shape and size, b)
- easily allows for the study of numerous commercially available, C) epitaxially grown single crystal materials.

Beam Radius (µm)

Mechanical Design

Cathode electrode

- Pierce electrode with pierce angle 31.1°
- Outer chamber sized with 13 inch flanges
- Cryoshield diameters 9.5 inch and 5.5 inch

Ansys Cryostat Power Extraction

comparison. Cathode temperature reaches 40 K.

shielding the thin ceramic.

Cryoshield added to reduce radiation heating Cathode can reach 20 K

cryogenic temperatures.

Shield added, Ansys calculation of cryostat cooling required. Cathode temperature reaches 15 K.

Acknowledgements

This work was supported by the U.S. National Science Foundation under Award PHY-1549132, the Center for Bright Beams. Gevork is grateful to NAPAC organization committee for the student grant.

References

[1] H. Lee, et al, Rev. Sci. Instrum., 89, 083303 (2018). [2] G. S. Gevorkyan, et al, Phys. Rev. Accel. Beams, 21, 093401 (2018). [3] G. Palacios-Serrano, et al, Rev Sci. Instrum., 89, 104703 (2018).