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Abstract
In particle accelerators, the tracking simulation is usually

performed with symplectic integration, or linear/nonlinear
transfer maps. In this paper, it is shown that the lin-
ear/nonlinear transfer maps may be represented by an ar-
tificial neural network. To solve this multivariate regression
problem, both random datasets and structured datasets are
explored to train the neural networks. The achieved accuracy
will be discussed.

INTRODUCTION
In particle accelerators, the numerical tracking simulation

is usually performed with either symplectic integration [1],
or linear/nonlinear transfer maps [1]. For large storage rings,
the particle accelerator is composed of thousands (or tens
of thousands) of components. Tracking simulation through
these components for hundreds of turns may take a long
computing time. In this paper, it is preliminarily explored
on representing the linear/nonlinear transfer maps with an
artificial neural network.

Figure 1: A fully connected feedforward network with two
hidden layers and eight neurons on each hidden layer.

Using a basic neural network framework that has been
developed in Python [2], it is possible to generate a fully
connected feedforward neural network model. The details of
this neural network framework are discussed in another pa-
per of this proceedings [3]. Figure 1 shows a fully connected
feedforward network with two hidden layers and eight neu-
rons on each hidden layer, with input and output as particle’s
3D coordinates. The default optimization algorithm adam
and activations Relu are employed [3].
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LINEAR MAP
With particle’s 3D coordinates of X = (x, x ′, y, y′, z, δ), it

is possible to perform tracking with a linear map. The linear
map can be expressed in the form of a six by six matrix R.
The particle’s final 3D coordinates Y are then calculated
using the initial 3D coordinates of X and the transfer matrix
of R, Y = R·X. Here, two different linear transfer matrix are
employed to evaluate the robustness of the neural network
model, as shown in Fig. 2.

0 2 4

0

2

4

−1
0
1
2
3

0 2 4

0

2

4
−0.2
−0.1
0.0
0.1
0.2

Figure 2: First order transfer matrix R. Left: from a FODO
cell; right: generated using random numbers.
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Figure 3: Input training data, size of 6 by 1000 (showing
first 60).
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Figure 4: Output training data, size of 6 by 1000 (showing
first 60).

The normalised input training data are generated randomly
which comprises of 1000 different samples. The dimention
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of the input training data is six. The output training data
is calculated using the linear transfer matrix and the input
training data. The training datasets are shown in Fig. 3 and
Fig. 4.
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Figure 5: Cost (linear map) as a function of number of
batches, for training/validation/test datasets.

In the case that there is no hidden layers, the neural net-
work will simply find the linear map as shown in Fig. 2.
Employing a four layer neural network as shown in Fig. 1,
the training cost function of mean square error is plotted
against the number of batches for training/validation/test
datasets, as shown in Fig. 5. It is observed that very high
accuracy is achieved for all three datasets. The differences
between the artificial neural network predicted output Ŷ, and
the real output Y, is then negligible, as shown in Fig. 6. This
artificial neural network model can well represent the one
turn linear map as expected.
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Figure 6: Differences between the artificial neural network
predicted output Ŷ, and the real output Y.

SECOND ORDER MAP
In the case that the second order transfer map is also

considered for particle tracking simulations, the particle’s
final 3D coordinates Y are then calculated using the initial
3D coordinates of X and the linear transfer matrix of R plus
the second order transfer matrix of T, Y = R · X + T · XX.
The combined linear transfer matrix of R plus the second
order transfer matrix of T are shown in Fig. 7, which is
generated using random numbers.

As mentioned in the above sections, for particle tracking
simulations with second order map, both random input data
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Figure 7: Combined linear transfer matrix of R plus the
second order transfer matrix of T, generated using random
numbers.

and structured input data are employed. The structured input
data is generated on equally spaced grids of normalized input
spaces. An example of the input datasets is shown in Fig. 8.
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Figure 8: Structured input training data X, size of 6 by 729.

A five layer feedforward neural network model is adopted
for training. For this case, the neural network model is harder
to train than for the linear map case. As shown in Fig. 9,
the cost functions are reduced along number of batches for
training/validation/test datasets. This figure seems to point
out that a larger/denser neural network model may be needed
to further improve the performance.
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Figure 9: Cost (second order map) as a function of number
of batches, for training/validation/test datasets.

The artificial neural network predicted output Ŷ and the
real output Y are shown side by side in Fig. 10, for the test
datasets. They seem to be identical, however the rms relative
difference is roughly 2 × 10−3.

A one dimentional scan on training data size shows that
data size of 30k seems to be enough to achieve high accura-
cies for all three datasets (training, validation and test data).
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Figure 10: The artificial neural network predicted output Ŷ
(bottom) and the real output Y (top) for the test datasets.
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Figure 11: One dimentional scan on training data size, show-
ing the cost for training, validation and test datasets.
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Figure 12: Comparison of particle tracking results (horizon-
tal coordinate X and vertical coordinate Y ), between neural
network model and second order map.

The lowest cost found is around 9× 10−6. It is observed that
the test dataset has the largest cost, as it is not involved in
the training process. The results are shown in Fig. 11.

Particle tracking simulations are performed either with
the second order map as discussed above, or with the trained
neural network model. A comparison of particle tracking

results of horizontal coordinate X and vertical coordinate
Y is shown in Fig. 12. It is observed that the difference is
relatively small and the amplitudes are damped to zero.

A two dimentional scan is performed on grids of learning
rates and initialization random seed number. The initializa-
tion random seed number is from 0 to 20, while the learning
rate is from 10−3 to 10−2. The figure of merit here is the
average cost. As shown in Fig. 13, for this specific neural
network training problem, the best learning rate is around
0.003, where initialization random seed number introduces
small difference.
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Figure 13: Two dimentional scan on learning rates and ini-
tialization random seed number.

CONCLUSIONS
Fully connected feedforward neural network models are

generated, using a basic neural network framework that has
been developed in Python. For particle tracking with lin-
ear map, it is possible to achieve very high accuracy even
with a multi layer neural network. For particle tracking with
linear and second order maps, an accuracy of 2 × 10−3 has
been achieved with a relatively small neural network. Some
hyperparameters are scanned for better performance. Com-
parison of particle tracking results demonstrate reasonable
agreement between neural network model and second order
map.
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