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Abstract
The ELEGANT code has the capability of simulating par-

ticle motion in accelerating or deflecting RF cavities, with a
simplified (or ideal) model of the electromagnetic fields. To
improve the accuracy of RF cavity simulations, the ability
to track with space harmonics has been added to the elegant
code. The sum of all the space harmonics will mimic the
real electromagnetic fields in the RF cavity. These space
harmonics will be derived from electromagnetic fields sim-
ulation of the RF cavity. This method should be general,
which can be applied to any traveling wave multi-cell RF cav-
ity structure, including accelerating and deflecting cavities.
In this paper this approach is illustrated with the deflecting
cavity example.

INTRODUCTION
There are several ways to perform particle tracking simu-

lations through an electromagnetic field which changes with
time. The most complicated and possibly most accurate
method is to directly tracking through a three dimensional
field map with fine mesh size, and integrate the momen-
tum/coordinates change due to the electromagnetic force
®F = q( ®E + ®V × ®B).

The simplest method is to model the electromagnetic field
as a thin element with zero length. The momentum change
(or angular kick) is applied with an effective impulse of the
dominant fields component which is usually integrated near-
axis with some approximations. This method is efficient in
simulation computing time, but may be less accurate.

An intermediate approach would be to expand the thin-
lens single kick method to a combination of multiple com-
ponents. These multiple components may be derived from
measured or simulated three dimensional electromagnetic
field map. One possibility is to use the space harmonics
that are determined by the geometry of the structure, which
provides boundary conditions of the electromagnetic field.
This approach could provide a more accurate model, and
at the same time are still efficient in simulation computing
time. In the following sections the work is discussed on
these three approaches.

THIN-LENS DEFLECTING CAVITY
The ELEGANT code [1] is capable of simulating parti-

cle’s motion in the accelerating or deflecting RF cavities,
with a simplified model of the electromagnetic fields. Take
the horizontal deflecting cavity as an example, the Hamilto-
nian to describe the thin deflecting cavity is
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H0 = qV̄ · sin(kz + ϕ0) · x, (1)

where H denotes the Hamiltonian, q the particle charge, V̄
the effective voltage, ϕ0 the synchronous phase of the thin
deflecting cavity rf wave, k = ω/c the wave number, ω the
angular frequency of the fundamental deflecting mode, c the
velocity of light, z the longitudinal coordinate relative to the
bunch center, x the horizontal coordinate.
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Figure 1: Longitudinal kick ∆Pz on x–z space. 6GHz de-
flecting cavity with V̄ = 1.

Using the Hamiltonian, it is possible to derive the deflec-
tion in the three dimensions from an ideal cavity, as listed
in Eqs. (2)–(4). These are used for an ideal deflecting cavity
in ELEGANT [1]:

∆Px = −
∂H0
∂x
= −qV̄ · sin(kz + ϕ0), (2)

∆Pz = −
∂H0
∂z
= −qV̄ · k · x · cos(kz + ϕ0), (3)

∆Py = 0, (4)

where ∆Px denotes the change of momentum in horizontal
plane, ∆Pz denotes the change of momentum in longitudinal
plane.
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Figure 2: Horizontal kick ∆Px on z–ϕ space. 6GHz deflect-
ing cavity with V̄ = 1.

Figure 1 shows the longitudinal kick from a 6 GHz thin
deflecting cavity with voltage of 1 volt. The horizontal kick
on the z–ϕ space is shown in Fig. 2 for same deflecting
cavity.
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DIRECT TRACKING WITH FIELD MAP
As mentioned above, the most complicated and possibly

most accurate method is to directly tracking through a three
dimensional field map with fine mesh size. An integration of
the electromagnetic force through the field map will provide
update for the momentum/coordinates.

The simulated 3D EM fields would have a total of 12
columns, which are the real and imaginary parts of E and B.
These EM fields contain all the space harmonic components
in the deflecting cavity, which can be considered to be static
EM fields at time t = 0:

Ẽ(x, y, z) = Ex(x, y, z)x̂ + Ey(x, y, z)ŷ + Ez(x, y, z)ẑ, (5)

B̃(x, y, z) = Bx(x, y, z)x̂ + By(x, y, z)ŷ + Bz(x, y, z)ẑ. (6)

The time varying electromagnetic fields are then ex-
pressed as

Ẽ(x, y, z, t) = Ẽ(x, y, z) · e−iωt, (7)

B̃(x, y, z, t) = B̃(x, y, z) · e−iωt . (8)

Work is in progress to include this capability in direct
tracking of time varying electromagnetic field map in EL-
EGANT [1]. This will be reported later, and here we focus
on the space harmonic approach.

SPACE HARMONIC APPROACH
As discussed in the above sections, the space harmonic

are determined by the periodic structures/geometry of the
cavity. The amplitude and phase of the space harmonics can
be obtained by performing singular value decomposition
on the electromagnetic field data from a cylindrical surface
centered on z axis [2]. The electric field (deflecting mode)
in the inside region of the iris of the deflecting cavity is
expressed as [2, 3]

Ez(r,Φ, z, t) =
∞∑

n=−∞

An
Im(αnr)
Im(αna)

·e−iknz ·e−imΦ ·e−iωt, (9)

kn =
φ0 + 2πn

d
, (10)

α2
n + k2

n = k2
0, (11)

where Im is first kind modified Bessel function, kn wave
number of nth space harmonic, n an integer number, φ0 the
phase advance per cavity period, d the cavity period length,
αn the wave number in the radial direction, m wave number
(per 2π) in the angular direction. The other components
of the electromagnetic field TM mode can be derived from
Ez . It is observed that the EM fields of lowest harmonic
(n = 0) depends linearly on radial coordinates. The cavity
period length d and inner radius a are shown in Fig. 3. In
the following part, the space harmonics with negative n are
neglected (no backward traveling waves).

For 2π/3 mode deflecting cavity (2π/3 phase advance per
cavity period), the wave number kn of space harmonic 1–10
is shown in Fig. 4.
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Figure 3: Notation of d and a on a five cell rf cavity.
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Figure 4: Space harmonic wave number kn on the n–d space,
for 2π/3 phase advance per cavity period.

The first kind modified Bessel function Im can be defined
by a series expansion around x = 0, as shown below. For
deflecting (dipole) mode, one finds that m = 1:

Im(x) =
∞∑
j=0

1
j! · Γ( j + m + 1)

·

( x
2

)2j+m
. (12)

As the electromagnetic fields are linearly decomposed
into the space harmonics, from the principle of superposi-
tion, the Hamiltonian to describe the thin deflecting cavity
with space harmonics also follows superposition principle.
It can be shown that for the zero-th space harmonic with
Hamiltonian H0, the Hamiltonian has no dependency on the
angular coordinate Φ with first order approximation. Keep
the first two terms in I1 (m = 1), neglect the vertical plane,
after some derivations, one finds (with r =

√
x2 + y2 and

x = r cosΦ)

H = H0+

∞∑
n=1

qV̄n·sin(knz + ϕn)·(
1
2
αn·x+

1
16
α3
n·(x

2+y2)·x).

(13)
The thin kicks from the space harmonics (n ≥ 1) are

∆Px = −
∂(H − H0)

∂x

=

∞∑
n=1

−qV̄n · sin(knz + ϕn) · (
1
2
αn +

1
16
α3
n · (3x2 + y2)),

(14)

∆Pz = −
∂(H − H0)

∂z
=

∞∑
n=1

−qV̄n · kn · cos(knz + ϕn)

· (
1
2
αn · x +

1
16
α3
n · (x

2 + y2) · x).

(15)
Assume that there is a 6 GHz deflecting cavity with up

to three space harmonics, it is possible to perform particle
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phase space tracking and illustrate the impacts from space
harmonics. The cavity period length is d = 0.03 m. The
effective voltage and the synchronous phase of these three
space harmonics are

• n = 0: V̄0 = 1, ϕ0 = 0,

• n = 1: V̄1 = 0.2, ϕ1 = π/3,

• n = 2: V̄2 = 0.15, ϕ2 = −π/3.

An electron beam with Gaussian distributions is employed
in the tracking simulation where the longitudinal coordinates
follow a uniform distribution just for illustration purpose.
With these relatively strong space harmonic components,
the phase space is shown in Fig. 5 and Fig. 6.
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Figure 5: Phase space of z–∆Px , after passing by the deflect-
ing cavity with up to three space harmonics.
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Figure 6: Phase space of x–∆Pz , after passing by the deflect-
ing cavity with up to three space harmonics.

IMPLEMENTATION IN ELEGANT CODE
The ELEGANT code [1] has a simplified model of the

electromagnetic fields in deflecting cavities, which is called
“RFDF”. This element’s major function is discussed in a
previous section “Thin-lens deflecting cavity”.

To include space harmonic components in the tracking
simulations, a new element named “SHRFDF” (space har-
monic RF deflector) is created in ELEGANT code [1]. The
cavity period length d is a scalar input, and the cavity cell
phase advance is another scalar input. The effective voltage
and the synchronous phase of the space harmonics will be
input as two arrays. Using some different parameters as

Figure 7: ELEGANT simulations [1], phase space of t−∆x ′,
after passing by the deflecting cavity with up to three space
harmonics.

compared to Fig. 5 and Fig. 6, a demonstration of the new
ELEGANT simulation capability is shown in Fig. 7.

CONCLUSIONS
Several possible ways are discussed to perform particle

tracking simulations through electromagnetic fields in the
RF cavity. The space harmonic approach could provide an
accurate model, and at the meantime are still efficient in
simulation computing time. The details and the implemen-
tations of the space harmonic approach are presented. It is a
reasonable tradeoff between the simplest model (with zeroth
harmonic) and the direct tracking through 3D electromag-
netic fields map. Work is in progress to directly tracking
through a three dimensional field map and integrate the
momentum/coordinates change due to the electromagnetic
force.
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