Vacuum Breakdown at 110 GHz

Samuel Schaub, M. A. Shapiro, R. J. Temkin Massachusetts Institute of Technology

October 11, 2016

Motivations and Goals

- Millimeter-wave RF LINAC structures have been the subject of recent research
 - Wakefield structures tested by SLAC at FACET facility¹
 - THz-driven electron LINAC demonstrated at MIT²

- □ There is a lack of experimental data on breakdown thresholds of materials at these frequencies (> 100 GHz)
 - Due to historical lack of sources
 - Megawatt gyrotrons have been developed for fusion applications
- Goals: Test breakdown thresholds of materials in physically simple geometries using a 110 GHz, 1.5 MW gyrotron
 - Multipactor breakdown of dielectrics
 - RF breakdown in simple metallic cavity in collaboration with SLAC³

1. M. Dal Forno et al., "Experimental measurements of rf breakdowns and deflecting gradients in mm-wave metallic accelerating structures," Phys. Rev. Accel. Beams, vol. 19, p. 051302, (2016).

2. E. Nanni et al., "Terahertz-driven linear electron acceleration," Nature Communications, vol. 6, p. 8486, (2016).

3. E. Nanni et al., "mm-Wave Standing-Wave Accelerating Structures for High-Gradient Tests" presented at IPAC16, Busan, Korea (2016)

Experiment Overview

Gyrotron
Up to 1.5 MW
110 GHz

- \circ 3 µs pulses
- 1 Hz rep. rate
- Gaussian beam output in free space

Experiment Overview

Diagnostics

• Forward and Reverse RF diode • Visible light CCD imager

• Pressure Monitor

Parallel E-field Configuration

- Structure placed in vacuum chamber
- Fabry-Pérot cavity
 - Cavity formed between a layered dielectric mirror and a spherical mirror
 - Dielectric mirror
 - Alternating layers of polished HRFZ Si and fused quartz wafers
 - 25.4 mm diameter
- Gaussian microwave beam incident from +x
 Linearly polarized in y
 Focused to 2 mm spot size radius (0.7 λ)

Parallel E-field Configuration

Parallel E-field Configuration

- Gaussian beam incident from
 - + x direction
 - Linearly polarized in y direction
 - \odot Focused to 1.5 mm spot size (0.55 λ)
 - Focused on end of thin dielectric rod
- Sample is thin dielectric rod
 - 0.5 mm diameter for 99.8% alumina and sapphire
 - \odot 0.8 mm diameter for fused quartz
- ~90% coupling to single propagating mode of dielectric rod waveguide
- Mode squeezed between two polished 99.9% alumina plates
 - Plates metalized with silver on sides away from sample

- Gaussian beam incident from left
 - 1 MW of power
- \Box Fields polarized in y
 - Strong E-fields on sides of rod (away from alumina plates)
- Alumina plates squeeze magnetic field of dielectric rod waveguide mode
 - Plates are metalized on sides away from the rod
 - Cutoff mode near end of plates
 - Creates standing wave on rod
- Max field on surface of sapphire and alumina rods: 125 MV/m (lower for

fused quartz)

H Field Gaussian beam incident 400 (um) x -5 5 from left kA / m ○ 1 MW of power 200 \Box Fields polarized in γ 0 • Strong E-fields on sides of 0 rod (away from alumina plates) H Field E Field Alumina plates squeeze 5 400 120 magnetic field of dielectric 100 ³⁰⁰ E 200 ¥ 300 MV / m y (mm) (mm) rod waveguide mode 80 60 • Plates are metalized on sides × 40 100 away from the rod 20 -5 35 0 ○ Cutoff mode near end of 50 40 45 40 45 50 plates z (mm) z (mm) • Creates standing wave on rod E Field (mm) y -2 □ Max field on surface 120 5 MV / m 80 of sapphire and alumina 40 rods: 125 MV/m (lower for 0 20 40 fused quartz) z (mm) 11

High Power Testing (Perp E-field)

- High power testing has begun on the dielectric rod (perpendicular E-field) configuration
- Base vacuum pressure 01×10^{-8} Torr
- Breakdown detection
 - \odot Pressure rises to a few $\times 10^{-7}$ Torr
- Breakdown visible on reverse power RF diode trace

High Power Testing (Perp E-field)

- □ Visible light images capture breakdowns
- Breakdowns occur reproducibly at the same locations along the rod

High Power Testing (Perp E-field)

- □ First tests on 99.8% alumina rod
- Currently tested up to 25 MV/m fields
 - Breakdowns from outgassing as power is ramped up
 - Breakdown rate at a given power drops to zero after < 100 shots
 - Threshold for multipactor breakdown not yet reached

Testing is ongoing

□ Current result: for 99.8% alumina with E-fields perpendicular to the surface, multipactor breakdown threshold > 25 MV/m

Future Work

Continue high power tests on dielectric rods (Perpendicular E-field)

Begin high power tests on dielectric windows (Parallel E-field)

Install additional diagnostics

- Photodiode Spectroscopy
- Dark current probe ICCD imager (2 ns exposures)

Test RF breakdown threshold in metallic cavity in collaboration with SLAC

- S. Tantawi group
- \odot Gaussian beam to TM₀₁ mode converter and TM₀₁ cavity designed by SLAC
- \odot Will require shortening gyrotron pulse from 3 μ s to ns timescale

Summary

Experiments have been designed to test multipactor breakdown thresholds of dielectrics

- Two designs for testing fields either parallel to or perpendicular to the sample surface
- Testing with high power, 110 GHz has begun
- Materials to be tested
 - Parallel E-field: crystal quartz, fused quartz, 96% and 99.9% alumina, sapphire, HRFZ Silicon
 - Perpendicular E-field: fused quartz, 99.8% alumina, sapphire
- Currently functioning diagnostics
 - Forward and reverse power RF diodes, pressure monitor, visible light CCD imager
- O Additional diagnostics will be added
 - Photodiode for time resolution
 - Dark current probe
- □ More high power testing to be done

□ Future testing of metallic structures will be done in collaboration with SLAC

Acknowledgements

UWaves and Beams Division at MIT Plasma Science and Fusion Center

Graduate Students

Hannah Hoffmann Xueying Lu Julian Picard Alexander Soane Haoran Xu

Postdocs

Guy Rosenzweig Jacob Stephens

Faculty and Staff

William Guss Sudheer Jawla Ivan Mastovsky Michael Shapiro Richard Temkin Paul Woskov

□ S. Tantawi's group at SLAC

○ V. Dolgashev and E. Nanni

Department of Energy High Energy Physics Grant DE-SC0015566