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Abstract 
State-of-the-art tools have been developed that allow 

start-to-end modeling of the beam formation at the 
cathode, to its transport, acceleration, and delivery to the 
undulator. Algorithms are based on first principles, 
enabling the capture of detailed physics such as shot-noise 
driven micro-bunching instabilities. The most recent 
generation of the IMPACT code, using multi-level 
parallelization on massively parallel supercomputers, now 
enables multi-objective parametric optimization. This is 
facilitated by recent advances such as the unified 
differential evolution algorithm. The most recent 
developments will be described, together with 
applications to the modeling of LCLS-II. 

INTRODUCTION 
High brightness, coherent x-ray free electron laser 

(FEL) light sources provide an invaluable tool for 
scientific discovery in biology, chemistry, physics, and 
material science. Most of these FEL light sources use an 
accelerator beam delivery system to generate high quality 
electron beam needed for coherent x-ray radiation in an 
undulator. In order to achieve the desired electron beam 
quality within a reasonable cost, the accelerator system 
needs to be carefully designed. Typically, the accelerator 
system consists of a photo-injector as a front end to 
produce a high brightness electron beam, a linear 
accelerator (or equivalent accelerator) to accelerate the 
electron beam to the designed energy and to compress the 
beam to high peak current, and a final beam transport 
system to deliver the beam for different radiation 
undulator stations. As the quality of the electron beam 
such as emittance, peak current, energy spread plays a 
critical role in the production of the coherent x-ray 
radiation, it is important to optimize the electron beam 
quality during the accelerator design. In past studies, the 
accelerator design was typically divided into two sections, 
the injector section and the linear accelerator (linac) 
section. The injector was designed using the theory of 
space-charge emittance compensation and the multi-
objective beam dynamics optimization [1-8]. After the 
injector optimization, an optimal solution from the 
injector output was selected as an input to the downstream 
linear accelerator. Using the electron beam information 
from the injector, the linear accelerator was then designed 
using analytical model, single pass tracking, and multi-
objective optimization [9-12]. However, it turns out that 
final beam quality does not only depend on the linear 
accelerator settings, but also depend on the initial electron 
beam distribution. An optimal solution from the injector 

does not necessarily mean the best solution for the final 
beam quality. For example, the final electron beam 
longitudinal phase space distribution does not depend 
only on the peak current of the electron beam out of the 
injector, but also on its longitudinal phase space 
distribution. A highly nonlinear phase space distribution 
cannot be easily compressed in the linac to a high peak 
current at the end of the accelerator. In this paper, we 
report on start-to-end beam dynamics optimization using a 
multi-objective global optimization method and show an 
application to a future x-ray FEL light source LCLS-II 
accelerator design.    

PARALLEL MULTI-OBJECTIVE 
OPTIMIZATION METHOD 

In accelerator community, multi-objective genetic 
algorithm (MOGA) such as NSGA-II has been widely 
used for beam dynamics optimization [13]. In this study, 
we developed a new multi-objective optimization 
algorithm based on a differential evolution method. The 
differential evolution method is a simple yet efficient 
population-based, stochastic, evolutionary algorithm for 
global parameter optimization [14]. In a number of 
studies, the differential evolution algorithm performed 
effectively in comparison to several stochastic 
optimization methods such as simulated annealing, 
controlled random search, evolutionary programming, the 
particle swarm method, and genetic algorithm [14-16].  

The differential evolution algorithm starts with a 
population initialization. A group of NP solutions in the 
control parameter space is randomly generated to form the 
initial population. This initial population can be generated 
by sampling from a uniform distribution within the 
parameter space if no prior information about the optimal 
solution is available, or by sampling from a known 
distribution (e.g., Gaussian) if some prior information is 
available. After initialization, the differential evolution 
algorithm updates the population from one generation to 
the next generation until reaching a convergence 
condition or until the maximum number of function 
evaluations is reached. At each generation, the update step 
consists of three operations: mutation, crossover, and 
selection. The mutation and the crossover operations 
produce new candidates for the next generation 
population and the selection operation is used to select 
among these candidates the appropriate solutions to be 
included in the next generation.  During the mutation 
operation stage, for each population member (target 
vector) xi, i = 1, 2, 3, • • • ,NP at generation G, a new 
mutant vector vi is generated by following a mutation 
strategy. In past studies, multiple mutation strategies 
(>10) were proposed in the literature.  
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The use of multiple mutation strategies makes the 
differential evolution algorithm complicated to implement 
and use appropriately. In recent study, we developed a 
new adaptive unified differential evolution (AuDE) 
algorithm for global optimization [17]. The unified 
mutation strategy can be written as: 

 
This algorithm uses only a single mutation expression, but 
encompasses almost all commonly-used mutation 
strategies as special cases. It is mathematically simpler 
than the conventional algorithm with its multiple mutation 
strategies, and also provides users the flexibility to 
explore new combinations of conventional mutation 
strategies during optimization. This single unified 
mutation strategy is further tuned to improve the 
performance by using only three control parameters 
instead of four control parameters in the original unified 
algorithm [18]. Figure 1 shows the error of an objective 
function evolution with the newly tuned adaptive unified 
differential evolution algorithm (AuDE3) together with 
several conventionally used differential evolution 
algorithms using a noisy shifted Schwefel’s problem 1.2 
as a test function. The tuned unified differential evolution 
algorithm out performs the other three algorithms in this 
example. 

 
Fig. 1: The error of the objective as a function of number 
generation from the unified differential evolution 
algorithm (AuDE3), the conventional /rand/1/bin, 
/best/1/bin and jDE algorithms. 

 
In many accelerator applications, one needs to optimize 

more than one objective function. The goal of multi-
objective optimization is to find the Pareto front in the 
objective function solution space. The Pareto optimal 
front is a collection of all non-dominated solutions in the 
whole feasible solution space. Any other solution in the 
feasible solution space will be dominated by those 
solutions on the Pareto optimal front. In the multi-
objective optimization, a solution A is said to dominate a 
solution B if all components of A are at least as good as 
those of B (with at least one component strictly better). 
The solution A is non-dominated if it is not dominated by 
any solution within the group. In this study, we have 
developed a new parallel multi-objective differential 
evolution algorithm with variable population size and 
external storage. The algorithm in each generation and 

external storage can be summarized in the following 
steps: 

• Step 0: Define the minimum parent size, NPmin 
and the maximum size, NPmax of the parent population. 
Define the maximum size of the external storage, NPext. 

• Step 1: An initial population of NPini parameter 
vectors is chosen randomly to cover the entire solution 
space. 

• Step 2: Generate the offspring population using 
the adaptive unified differential evolutionary algorithm. 

• Step 3: Check the new population against 
boundary conditions and constraints. 

• Step 4: Combine the new population with the 
existing parent population from the external storage. Non-
dominated solutions (Ndom) are found from this group of 
solutions and min(Ndom, NPext) of solutions are put back 
into external storage. Pruning is used if Ndom > NPext. 
NP parent solutions are selected from this group of 
solutions for next generation production. If NPmin ≤ 
Ndom ≤ NPmax, NP = Ndom. Otherwise, NP = NPmin if 
Ndom < NPmin and NP = NPmax if Ndom > NPmax. The 
elitism is emphasized through keeping the non-dominated 
solutions while the diversity is maintained by penalizing 
the over-crowded solutions through pruning. 

• Step 5: If the stopping condition is met, stop. 
Otherwise, return to Step 2. 

 
As a test of above algorithm, we used the following two 

objective functions, which are to be minimized:                 

     
The optimal Pareto front for these two objectives is: 																															 ଶ݂ = 1 − ଵ݂ଶ 

                     
The final optimal Pareto front from both the numerical 
solution and the analytical solution is shown in Fig. 2. 
Figure 3 also shows the distance to the Pareto front as a 
function of the number of objective function evaluations 
from the above algorithm and the widely used genetic 
algorithm NSGA-II. It is seen that new proposed 
algorithm (called “variation population with external 
storage differential evolution algorithm” or VPES) can be 
significantly faster than the widely used genetic 
algorithm. 

One advantage of the evolutionary based optimization 
algorithm is that it is very easy to be parallelized on multi-
processor high performance computer. Here, we have 
used a multi-group method in which the population is 
uniformly distributed among the total number of groups. 
Each single group of processors is used for one objective 
function evaluation using the parallel beam dynamics 
simulation. This two-level parallelization method makes 
the start-to-end simulation scalable on a supercomputer 
with a large number of processors. 
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Fig. 2: The Pareto optimal front from the VPES and 
analytical solution. 

 

 
 

Fig. 3: Distance to the analytical Pareto front from the 
VPES and the NGSA-II algorithm. 

                                                                        
START-TO-END BEAM DYNAMICS 

OPTIMIZATION 
 

The start-to-end beam dynamics simulations presented 
in this study were done using a 3D parallel beam 
dynamics simulation framework IMPACT [19-21]. It 
includes a time-dependent 3D space-charge code module 
IMPACT-T for injector modeling and a position-
dependent 3D space-charge code module for linac and 
beam transport system model. The simulation starts from 
the generation of photo-electrons at the photo-cathode 
following the initial laser pulse distribution and the given 
initial thermal emittance. The electron macroparticles out 
of the cathode will be subject to both the external fields 
from a DC/RF gun and solenoid, and the space-
charge/image charge fields from the Coulomb interaction 
of the particles among themselves. After exiting from the 
injector, the electron macroparticle will transport through 
a linear accelerator and beam transport system that 
includes laser heater, bunch compressors, accelerating RF 
cavities, harmonic linearizer, and magnetic focusing 
elements. Besides the 3D space-charge effects, the 
simulation also includes coherent synchrotron radiation 
(CSR) effects through a bending magnet, incoherent 
synchrotron radiation inside the bending magnet, RF 
cavity structure wakefield, and resistive wall wakefield.  

The start-to-end beam dynamics simulation is 
integrated with the parallel multi-objective optimization 
program described above. Figure 4 shows a schematic 

plot of the global optimization including both the injector 
control parameters and the linac control parameters in the 
start-to-end beam dynamics optimization. Here, the start-
to-end simulation is treated as an objective function in the 
parallel multi-objective optimizer. The parallel optimizer 
will call the IMPACT simulation by passing the injector 
control parameters and the linac control parameters into 
the objective function. The injector control parameters 
normally include laser pulse transverse size and length, 
RF gun amplitude and phase, solenoid strength, buncher 
and boosting cavity amplitudes and phases. The linac 
control parameters include linac section 1 cavity 
amplitude and phase, harmonic linearizer amplitude and 
phase, bunch compressor 1 bending angle, linac section 2 
cavity amplitude and phase, bunch compressor 2 bending 
angle, and so on. There can be more than 20 total number 
of control parameters for the global optimization. Instead 
of starting with direct global optimization in the entire 
control parameter space, we start the optimization with 
reduced control parameter space that contains only the 
injector control parameters. The two objective functions, 
final project transverse emittance and rms bunch length 
(directly related to peak current) at the exit of the injector 
are optimized subject to a number of constraints. These 
constraints are final electron beam energy, beam energy 
chirp, longitudinal phase space nonlinearity, and so on. 
After a Pareto optimal front is found for these two 
objective functions at the exit of the injector, these 
optimal injector control parameters are combined with 
some randomly sampled control parameter solutions in 
the linac. Using the optimal injector control parameters as 
a partial initial component in the global control parameter 
solution significantly saves the computational time and 
speeds up the convergence of the final global solution. 
During the global beam dynamics optimization, one of the 
objective (transverse emittance) from the original injector 
optimization becomes a constraint to the new objective 
functions. Those solutions at the exit of the injector that 
can not satisfy this constraint for final start-to-end 
optimization will be automatically excluded at the 
beginning of the global optimization. For the global beam 
dynamics optimization, in the linac section, we decouple 
the electron beam dynamics in the transverse direction 
from that in the longitudinal direction. This is because at 
this energy, the longitudinal bunch length is mostly 
frozen, the final longitudinal phase space is primarily 
determined by the linac RF settings, bunch compressor 
settings, and longitudinal collective effects such as 
longitudinal space-charge effects, longitudinal wakefields, 
and coherent synchrotron radiation. The transverse beam 
dynamics is primarily determined by the lattice matching 
and transverse space charge effect, and CSR. In the 
transverse direction, we would like to minimize the 
emittance growth in the linac. In the longitudinal 
direction, we would like to attain a higher peak current 
with flatter longitudinal phase space. Two objective 
functions are defined for the global longitudinal beam 
dynamics optimization. These two functions are fraction 
of charge and rms energy spread inside a given 
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longitudinal window. The output from the injector such as 
energy, emittance, and energy spread are used as 
constraints for the global optimization. Besides the 
constraint at the exit of the injector, we also put 
constraints at the final linac output such as energy, peak 
current etc. After the global longitudinal beam dynamics 
optimization is done, the transverse emittance growth in 
the linac is minimized through transverse beam dynamics 
optimization by retuning a number of quadrupole settings 
along the linac including the transverse space-charge and 
CSR effects.  

 

 
 
Fig. 4: A schematic diagram of the global beam dynamics 
optimization. 

 
APPLICATION TO AN X-RAY FEL 

ACCELEATOR DESIGN 
OPTIMIZATION* 

 
As an application, we applied the above global multi-

objective beam dynamics optimization tool to an LCLS-II 
design optimization with a 20 pC charge. The LCLS-II is 
a high repetition rate (1 MHz) x-ray FEL that will deliver 
photons of energy between 200 eV and 5 keV [22-23]. It 
consists of a high repetition rate photo-injector to generate 
and accelerate the electron beam to about 100 MeV, a 
laser heater (LH) to suppress microbunching instability, a 
section of superconducting linac L1 to accelerate the 
beam to 250 MeV, a bunch compressor BC1, a second 
section of superconducting linac L2 to accelerate the 
beam to 1.6 GeV, a bunch compressor BC2, and a third 
section of superconducting linac L3 to accelerate the 
beam to 4 GeV, a long bypass transport line, and a 
magnetic kicker to spread the electron beam to a soft x-
ray transport beam line and to a hard x-ray transport beam 
line. The superconduting linacs in all three sections are 
made of 1.3 GHz 9 cell superconducting cavities except 
the two cryomodules of 3.9 GHz third harmonic cavities 
right before the BC1 to linearize longitudinal phase space.  

For the global longitudinal beam dynamics optimization 
of this accelerator, we have defined 22 control 
parameters: 12 in the injector, 10 in the linac.  The 12 
control parameters in the injector are laser transverse size, 

laser pulse flat-top length, VHF gun RF phase, buncher 
cavity amplitude and phase, two solenoid strengths, the 1st 
boosting cavity amplitude and phase, and the 2nd boosting 
cavity amplitude and phase and the last cavity phase. The 
10 control parameters in the linac are the linac section one 
amplitude and phase, 3rd harmonic cavity amplitude and 
phase, bending angle in bunch compressor one, linac 
section two amplitude and phase, bending angle in bunch 
compressor two, and linac amplitude and phase. 

We first did two objective optimization of the injector 
design with the 12 control parameters. These two 
objectives are final rms emittance and rms bunch length. 
Figure 5 shows the Parato front of these two objectives 
from the injector optimization. Here, we have set a final 
peak current to be lower than 20 A, final rms emittance to 
be less than 1 um, final electron beam energy to be greater 
than 85 MeV, final rms energy spread to be less than 100 
keV. It is seen that the rms emittance approaches to 0.1 
um with the rms bunch length close to 1 mm. The 
simulation was done using 10,000 macroparticles with 
32x32x64 grid points.  

 

 
Fig. 5: The Pareto front of the injector beam dynamics 
optimization. 

In most previous studies, a solution is selected from this 
Pareto front as the solution of the injector. Using this 
solution from the injector as an initial distribution, the 
linac optimization is carried out to find the best solution at 
the end of the accelerator. In this study, instead of using a 
single solution from the above Pareto front, we combined 
the 12 control parameters of these solutions together with 
the 10 linac control parameters that randomly sampled 
from the allowed solution space as the first generation of 
the global start-to-end multi-objective longitudinal beam 
dynamics optimization. Figure 6 shows the Pareto front of 
the two objective functions from the global optimization. 
These two objective functions are the negative fraction of 
charge inside and the rms energy spread inside a window 
between -7 and 9 um. In this plot, we also show the Pareto 
front from only the linac optimization using the solution 
from the injector as an initial distribution. It is seen that 
the Pareto front from the global is significantly better than 
that from the linac only optimization. For the same 
amount of charge inside the window, the global solution 
has 40% less energy spread in some region. For the same 
level of the final rms energy spread, the global solution 
has 15% larger amount of charge. In this simulation, 

 ___________________________________________  
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besides those constraints for the beam at the exit of the 
injector, we also put constraints on the final beam energy 
to be greater than 3.9 GeV, final rms energy spread to be 
less than 2.5 MeV, fraction of charge inside the window 
between 0.3 and 0.9. 

CONCLUSIONS 
  In this paper, we reported on a global start-to-end 

beam dynamics multi-objective optimization method for 
x-ray FEL accelerator design. Using the recently 
developed parallel variable population with external 
storage multi-objective differential evolution algorithm 
and together with the start-to-end parallel beam dynamics 
simulation, we have shown in an LCLS-II design example 
that the global optimization including control parameters 
for both the injector and the linac can result in a better 
optimal solution than the linac only optimization using an 
optimal solution from the injector. 

 

 
Fig. 6: The Pareto front from the global beam dynamics 
optimization and from the linac only optimization using 
one optimal injector solution. 
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