Author: Yampolsky, N.A.
Paper Title Page
TUB4CO03 Optimization of Compton Source Performance Through Electron Beam Shaping 474
SUPO60   use link to see paper's listing under its alternate paper code  
 
  • A. Malyzhenkov, N.A. Yampolsky
    LANL, Los Alamos, New Mexico, USA
 
  We investigate a novel scheme for significantly increasing the brightness of x-ray light sources based on inverse Compton scattering (ICS) - scattering laser pulses off relativistic electron beams. The brightness of these sources is limited by the electron beam quality since electrons traveling at different angles, and/or having different energies, produce photons with different energies. Therefore, the spectral brightness of the source is defined by the 6d electron phase space shape and size, as well as laser beam parameters. The peak brightness of the ICS source can be maximized then if the electron phase space is transformed in a way so that all electrons scatter off the x-ray photons of same frequency in the same direction. We describe the x-ray photon beam quality through the Wigner function (6d photon phase space distribution) and derive it for the ICS source when the electron and laser rms matrices are arbitrary. We find the optimal uncorrelated electron beam phase space distribution resulting in the highest brightness of the ICS source for the simple on axis case as an example.  
slides icon Slides TUB4CO03 [1.673 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUB4CO03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)