Author: Wu, Y.H.
Paper Title Page
TUPOB24 Optimization of Linear Induction Radiography Accelerator with Electron Beam with Energy Variation 546
 
  • Y.H. Wu, Y.J. Chen
    LLNL, Livermore, California, USA
 
  Funding: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
The current interest for the next generation linear induction radiography accelerator (LIA) is to generate multiple electron beam pulses with high peak currents. The beam energy and current may vary from pulse to pulse. Conse-quently, the transport and control of multi-pulsing intense electron beams through a focus-ing lattice over a long distance on such machine becomes challenging. Simulation studies of multi-pulse LIAs using AMBER [1] and BREAKUP Code [2] are described. These include optimized focusing magnetic tune for beams with energy and current variations, and steering correction for corkscrew motion. The impact of energy variation and accelerating voltage error on radiograph performance are discussed.
 
poster icon Poster TUPOB24 [1.419 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOB24  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOB25 Unfolding Electron Beam Parameters Using Spot Size Measurement From Magnet Scan 549
 
  • Y.H. Wu, Y.J. Chen, J. Ellsworth
    LLNL, Livermore, California, USA
 
  Funding: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
The Flash X-ray Radiography (FXR) [1] line-ar induction accelerator at Lawrence Livermore National Laboratory produces x-ray bursts for radiographs. The machine is able to produce x-ray spot sizes less than 2mm. Using the spot sizes measured from the magnet scanning, the beam parameters are unfolded by modelling the FXR LINAC with the simulation code AMBER [2] and the envelope code XENV [3]. In this study, the most recent spot size measurement results and techniques used to extract the beam parameters are described. Using the unfolded beam parameters as the initial condition, the backstreaming ions' neutralization factor f = 0.3 is found by comparing the calculated spot sizes with measured spot sizes at the target.
 
poster icon Poster TUPOB25 [0.576 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOB25  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)