Author: Steimel, J.
Paper Title Page
MOPOB17 Resonant Frequency Control for the PIP-II Injector Test RFQ: Control Framework and Initial Results 109
 
  • A.L. Edelen, S. Biedron, S.V. Milton
    CSU, Fort Collins, Colorado, USA
  • D.L. Bowring, B.E. Chase, J.P. Edelen, D.J. Nicklaus, J. Steimel
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by Fermilab Research Alliance, LLC under Contract No. DE-AC02-07CH11359.
For the PIP-II Injector Test (PI-Test) at Fermilab, a four-vane radio frequency quadrupole (RFQ) is designed to accelerate a 30-keV, 1-mA to 10-mA H' beam to 2.1 MeV under both pulsed and continuous wave (CW) RF operation. The available headroom of the RF amplifiers limit the maximum allowable detuning to 3 kHz, and the detuning is controlled entirely via thermal regulation. Fine control over the detuning, minimal manual intervention, and fast trip recovery is desired. In addition, having active control over both the walls and vanes provides a wider tuning range. For this, we intend to use model predictive control (MPC). To facilitate these objectives, we developed a dedicated control framework that handles higher-level system decisions as well as executes control calculations. It is written in Python in a modular fashion for easy adjustments, readability, and portability. Here we describe the framework and present the first control results for the PI-Test RFQ under pulsed and CW operation.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOPOB17  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOB66 Procedure for the Alignment of the Beam in the Electrical Axes of the Pi-Test RFQ 639
 
  • J.-P. Carneiro, L.R. Prost, J. Steimel
    Fermilab, Batavia, Illinois, USA
 
  The PI-Test Radio-Frequency Quadrupole (RFQ) has been in operation with beam at Fermilab since March 2016. The RFQ accelerates H beam from 30 keV to 2.1 MeV currently with 20 mus pulses and a maximum current of 10 mA. Once fully conditioned, the RFQ is expected to enable CW operation. Simulations with the beam dynamics code TRACK predict that a misalignment of the beam at the RFQ entrance can possibly deteriorate the transverse and longitudinal emittance at the RFQ exit without necessarily impacting the beam transmission. This paper discusses the procedure developed at Fermilab to align the beam in the electrical axes of the RFQ. Experimental results are shown together with predictions from TRACK.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOB66  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOA15 Installation Progress at the PIP-II Injector Test at Fermilab 722
 
  • C.M. Baffes, M.L. Alvarez, R. Andrews, A.Z. Chen, J. Czajkowski, P. Derwent, J.P. Edelen, B.M. Hanna, B.D. Hartsell, K.R. Kendziora, D.V. Mitchell, L.R. Prost, V.E. Scarpine, A.V. Shemyakin, J. Steimel, T.J. Zuchnik
    Fermilab, Batavia, Illinois, USA
  • A.L. Edelen
    CSU, Fort Collins, Colorado, USA
 
  Funding: Fermilab is operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy
A CW-compatible, pulsed H superconducting linac 'PIP-II' is being planned to upgrade Fermilab's injection complex. To validate the concept of the front-end of such a machine, a test accelerator (The PIP-II Injector Test, formerly known as "PXIE") is under construction. The warm part of this accelerator comprises a 10 mA DC 30 keV H ion source, a 2m-long LEBT, a 2.1 MeV CW RFQ, and a 10-m long MEBT that is capable of creating a large variety of bunch structures. The paper will report on the installation of the RFQ and the first sections of the MEBT and related mechanical design considerations.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOA15  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)