Paper | Title | Page |
---|---|---|
MOPOB13 | Post Irradiation Examination Results of the NT-02 Graphite Fins Numi Target | 99 |
|
||
Funding: Work supported by Fermi Research Alliance, LLC, under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy. The NT-02 neutrino target in the NuMI beamline at Fermilab is a 95 cm long target made up of segmented graphite fins. It is the longest running NuMI target, which operated with a 120 GeV proton beam with maximum power of 340 kW, and saw an integrated total proton on target of 6.1 x 1020. Over the last half of its life, gradual degradation of neutrino yield was observed until the target was replaced. The probable causes for the target performance degradation are attributed to radiation damage, possibly including cracking caused by reduction in thermal shock resistance, as well as potential localized oxidation in the heated region of the target. Understanding the long-term structural response of target materials exposed to proton irradiation is critical as future proton accelerator sources are becoming increasingly more powerful. As a result, an autopsy of the target was carried out to facilitate post-irradiation examination of selected graphite fins. Advanced microstructural imaging and surface elemental analysis techniques were used to characterize the condition of the fins in an effort to identify degradation mechanisms, and the relevant findings are presented in this paper. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOPOB13 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPOB35 | Design of the LBNF Beamline Target Station | 146 |
|
||
Funding: Work supported by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. The Long Baseline Neutrino Facility (LBNF) project will build a beamline located at Fermilab to create and aim an intense neutrino beam of appropriate energy range toward the DUNE detectors at the SURF facility in Lead, South Dakota. Neutrino production starts in the Target Station, which consists of a solid target, magnetic focusing horns, and the associated sub-systems and shielding infrastructure. Protons hit the target producing mesons which are then focused by the horns into a helium-filled decay pipe where they decay into muons and neutrinos. The target and horns are encased in actively cooled steel and concrete shielding in a chamber called the target chase. The reference design chase is filled with air, but nitrogen and helium are being evaluated as alternatives. A replaceable beam window separates the decay pipe from the target chase. The facility is designed for initial operation at 1.2 MW, with the ability to upgrade to 2.4 MW, and is taking advantage of the experience gained by operating Fermilab's NuMI facility. We discuss here the design status, associated challenges, and ongoing R&D and physics-driven component optimization of the Target Station. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOPOB35 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPOA16 | Fermilab Recycler Collimation System Design | 726 |
|
||
Funding: Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy. To provide 700 kW proton beams for neutrino production in the NuMI facility, we employ slip stacking in the Recycler with transfer to the Main Injector for recapture and acceleration. Slip stacking with 12 Booster batches per 1.33 sec cycle of the Main Injector has been implemented and extensive operation with 8 batches and 10 batches per MI cycle has been demonstrated. Operation in this mode since 2013 shows that loss localization is an essential component for long term operation. Beam loss in the Recycler will be localized in a collimation region with design capability for absorbing up to 2 kW of lost protons in a pair of 20-Ton collimators (absorbers). This system will employ a two stage collimation with a thin Mo scattering foil to define the bottom edge of both the injected and decelerated-for-slipping beams. Optimization and engineering design of the collimator components and radiation shielding are based on comprehensive MARS15 simulations predicting high collimation efficiency as well as tolerable levels of prompt and residual radiation. The system installation during the Fermilab 2016 facility shutdown will permit commissioning in the subsequent operating period. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOA16 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |