Paper | Title | Page |
---|---|---|
TUPOA19 | 50-MeV Run of the IOTA/FAST Electron Accelerator | 326 |
|
||
Funding: Supported by the DOE contract No.DEAC02-07CH11359 to the Fermi Research Alliance LLC. The low-energy section of the photoinjector-based electron linear accelerator at the Fermilab Accelerator Science & Technology (FAST) facility was recently commissioned to an energy of 50 MeV. This linear accelerator relies primarily upon pulsed SRF acceleration and an optional bunch compressor to produce a stable beam within a large operational regime in terms of bunch charge, total average charge, bunch length, and beam energy. Various instrumentation was used to characterize fundamental properties of the electron beam including the intensity, stability, emittance, and bunch length. While much of this instrumentation was commissioned in a 20 MeV running period prior, some (including a new Martin-Puplett interferometer) was in development or pending installation at that time. All instrumentation has since been recommissioned over the wide operational range of beam energies up to 50 MeV, intensities up to 4 nC/pulse, and bunch structures from ~1 ps to more than 50 ps in length. |
||
![]() |
Poster TUPOA19 [4.636 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOA19 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPOA46 | Development of a Python-Based Emittance Calculator at Fermilab Science & Technology (FAST) Facility | 376 |
SUPO61 | use link to see paper's listing under its alternate paper code | |
|
||
Beam emittance is an important characteristic which helps to describe a charged particle beam. In linear accelerators (linac), it is critical to characterize the beam phase space parameters and, in particular, to precisely measure transverse beam emittance. The quadrupole scan (quad-scan) is a well established technique used to characterize transverse beam parameters in four-dimensional phase space. Quad-scans are very time consuming and off-line analysis is needed to extrapolate the beam phase space parameters. We have developed a computational algorithm with Python scripts to automatically estimate beam parameters, in particular beam emittance, using the quadrupole scan technique in the electron linac of Fermilab Accelerator Science and Technology (FAST) facility. These Python scripts have decreased the time it takes to perform a single quad scan from a few hours to a few minutes. From the experimental data, the emittance calculator quickly delivers various results including: transverse emittance, Courant-Snyder parameters, and Beam Size (squared) vs Quadrupole field strength plots, among others. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOA46 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPOB18 | Beam Test of Masked-Chicane Micro-Buncher | 528 |
|
||
Funding: This work was supported by the DOE contract No.DEAC02-07CH11359 to the Fermi Research Alliance LLC. We also thank the FAST Department team for the helpful discussion and technical supports. Masking a dispersive beamline such as a dogleg or a chicane [1, 2] is a simple way to shape a beam in the longitudinal and transverse space. This technique is often employed to generate arbitrary bunch profiles for beam/laser-driven accelerators and FEL undulators or even to reduce a background noise from dark currents in electron linacs. We have been investigating a beam-modulation of a slit-masked chicane, which was deployed for crystal-channeling experiments at the injector beamline of the Fermilab Accelerator Science and Technology (FAST) facility. With a nominal beam of 3 ps bunch length, Elegant simulations showed that a slit-mask with slit period 900 um and aperture width 300 um induces a modulation with bunch-to-bunch space of about 187 um (0.25 nC), 270 um (1 nC) and 325 um (3.2 nC) with 3 ~ 6% correlated energy spread: An initial energy modulation pattern has been observed in the electron spectrometer downstream of the masked chicane using a micropulse charge of 260 pC and 40 micropulses. Investigations of the beam longitudinal modulation are planned with a Martin-Puplett interferometer and a synchro-scan streak camera at a station between the chicane and spectrometer. [1] D.C.Nguyen, B.E.Carlsten, NIMA 375, 597 (1996) [2] P.Muggli, V.Yakimeno, M.Babzien, et al., PRL 101, 054801 (2008) |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOB18 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPOA39 | Theoretical and Numerical Study on Plasmon-Assisted Channeling Interactions in Nanostructures | 782 |
|
||
Funding: This work was supported by the DOE contract No. DEAC02-07CH11359 to the Fermi Research Alliance LLC. A plasmon-assisted channeling acceleration can be realized with a large channel possibly in a nanometer scale. Carbon nanotubes are the most typical example of nano-channels that can confine a large amount of channeled particles and confined plasmon in a coupling condition. This paper presents theoretical and numerical study on the concept of the laser-driven surface-plasmon (SP) acceleration in a carbon nanotube (CNT) channel. Analytic description of the SP-assisted laser acceleration is detailed with practical acceleration parameters, in particular with specifications of a typical tabletop femto-second laser system. The maximally achievable acceleration gradients and energy gains within dephasing lengths and CNT lengths are discussed with respect to laser-incident angles and CNT-filling ratios. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOA39 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPOA40 | Construction Status of a RF-Injector with a CNT-Tip Cathode for High Brightness Field-Emission Tests | 785 |
|
||
We have been constructing a S-band RF-injector system for field-emission tests of a CNT-tip cathode. A pulsed Sband klystron is installed and fully commissioned with 5.5 MW peak power in a 2.5 microsecond pulse length and 1 Hz repetition rate. A single-cell RFgun is designed to produce with 0.5 - 1 pC electron bunches in a photo-emission mode within a 50 fs - 3 ps at 0.5- 1 MeV. The measured RF system jitters are within 1 % in magnitude and 0.2° in phase, which would induce 3.4 keV and 0.25 keV of energy jitters, corresponding to 80 fs and 5 fs of temporal jitters, respectively. Our PIC simulations indicate that the designed bunch compressor reduces the TOAjitter by about an order of magnitude. Emission current and beam brightness of the field-emitted beam are improved by implanting CNT tips on the cathode surface, since they reduce the emission area, while providing high current emission. Once the system is completely commissioned in field-emission mode, the CNT-tip cathode will be tested in terms of klystron-power levels to map out its I-V characteristics under pulse emission condition. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOA40 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |