Author: Sannibale, F.
Paper Title Page
TUB1CO03 ALS-U: A Soft X-Ray Diffraction Limited Light Source 263
 
  • C. Steier, A. Anders, J.M. Byrd, K. Chow, S. De Santis, R.M. Duarte, J.-Y. Jung, T.H. Luo, H. Nishimura, T. Oliver, J.R. Osborn, H.A. Padmore, G.C. Pappas, S. Persichelli, D. Robin, F. Sannibale, D. Schlueter, C. Sun, C.A. Swenson, M. Venturini, W.L. Waldron, E.J. Wallén, W. Wan, Y.C. Yang
    LBNL, Berkeley, California, USA
 
  Funding: This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
Improvements in brightness and coherent flux of about two orders of magnitude over operational storage ring based light sources are possible using multi bend achromat lattice designs. These improvements can be implemented as upgrades of existing facilities, like the proposed upgrade of the Advanced Light Source (ALS-U). The upgrade proposal will reuse much of the existing infrastructure, thereby reducing cost and time needed to reach full scientific productivity on a large number of beamlines. We will report on the accelerator design progress as well as the details of the ongoing R+D program.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUB1CO03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUB3IO02 Overview of Electron Source Development for High Repetition Rate FEL Facilities 445
 
  • F. Sannibale
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by the Director of the Office of Science of the US Department of Energy under Contract no. DEAC02-05CH11231 'fsannibale@lbl.gov
An increasing science demand for high-repetition rate (MHz-class) FEL facilities, from IR to X-rays, has been pushing institutions and groups around the world to develop proposals addressing such a need, and some of them have been already funded and are under construction. Such facilities require the development of high-brightness high-repetition rate electron guns, and a number of groups worldwide started to develop R&D programs to develop electron guns capable of operating at this challenging regime. Here we describe the approaches and technologies used by the different programs and discuss advantages and challenges for each of them. A review of the present achievements is included, as well as a brief analysis to understand if the present technology performance is sufficient to operate present and future high repetition rate FEL facilities.
 
slides icon Slides TUB3IO02 [7.951 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUB3IO02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)