Author: Riemer, K.H.
Paper Title Page
MOPOB40 Quench Training Analysis of Nb3Sn Accelerator Magnets 155
 
  • S. Stoynev, K.H. Riemer, A.V. Zlobin
    Fermilab, Batavia, Illinois, USA
 
  Funding: This work is supported by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy.
Nb3Sn accelerator magnet technology has made significant progress during the past decades. Thanks to that 11-12 T Nb3Sn dipoles and quadrupoles are planned to be used in accelerators such as LHC in near future for the luminosity upgrade and in longer term for the LHC energy upgrade or a future Very High Energy pp Collider. However, all the state of the art Nb3Sn accelerator magnets show quite long training. This specific feature significantly raises the required design margin or limit the nominal operation field of Nb3Sn accelerator magnets and, thus, increases their cost. To resolve this problem Fermilab has launched a study aiming to analyze the relatively large amount of Nb3Sn magnet training data accumulated at Fermilab magnet test facility. The ultimate goal is to correlate magnet design and manufacturing features and magnet material properties with training performance parameters which will eventually allow us to optimize both the magnet design, fabrication and the training processes. This paper describes the general strategy of the analysis and presents the first results based on partial data processing. Conclusions and further steps are also outlined and discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOPOB40  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)