Author: Ranjbar, V.H.
Paper Title Page
MOB3CO03 RHIC Au-Au Operation at 100 GeV in Run16 42
 
  • X. Gu, J.G. Alessi, E.N. Beebe, M. Blaskiewicz, J.M. Brennan, K.A. Brown, D. Bruno, J.J. Butler, R. Connolly, T. D'Ottavio, K.A. Drees, W. Fischer, C.J. Gardner, D.M. Gassner, Y. Hao, M. Harvey, T. Hayes, H. Huang, R.L. Hulsart, P.F. Ingrassia, J.P. Jamilkowski, J.S. Laster, V. Litvinenko, C. Liu, Y. Luo, M. Mapes, G.J. Marr, A. Marusic, G.T. McIntyre, K. Mernick, R.J. Michnoff, M.G. Minty, C. Montag, J. Morris, C. Naylor, S. Nemesure, I. Pinayev, V.H. Ranjbar, D. Raparia, G. Robert-Demolaize, T. Roser, P. Sampson, J. Sandberg, V. Schoefer, F. Severino, T.C. Shrey, K.S. Smith, S. Tepikian, R. Than, P. Thieberger, J.E. Tuozzolo, G. Wang, Q. Wu, A. Zaltsman, K. Zeno, S.Y. Zhang, W. Zhang
    BNL, Upton, Long Island, New York, USA
 
  In order to achieve higher instantaneous and integrated luminosities, the average Au bunch intensity in RHIC has been increased by 30% compared to the preceding Au run. This increase was accomplished by merging bunches in the RHIC injector AGS. Luminosity leveling for one of the two interaction points (IP) with collisions was realized by continuous control of the vertical beam separation. Parallel to RHIC physics operation, the electron beam commissioning of a novel cooling technique with potential application in eRHIC, Coherent electron Cooling as a proof of principle (CeCPoP), was carried out. In addition, a 56 MHz superconducting RF cavity was commissioned and made operational. In this paper we will focus on the RHIC performance during the 2016 Au-Au run.  
slides icon Slides MOB3CO03 [2.173 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOB3CO03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOB56 The eRHIC Ring-Ring Design 616
 
  • C. Montag, G. Bassi, J. Beebe-Wang, J.S. Berg, M. Blaskiewicz, A.V. Fedotov, W. Fischer, Y. Hao, A. Hershcovitch, Y. Luo, R.B. Palmer, B. Parker, S. Peggs, V. Ptitsyn, V.H. Ranjbar, S. Seletskiy, T.V. Shaftan, V.V. Smaluk, S. Tepikian, F.J. Willeke, H. Witte, Q. Wu
    BNL, Upton, Long Island, New York, USA
 
  The ring-ring version of the eRHIC electron-ion collider design aims at providing electron-proton collisions with a center-of-mass energy ranging from 32 to 141 GeV at a luminosity reaching 1033 cm-2 sec-1. This design of the double-ring collider also supports electron-ion collisions with similar electron-nucleon luminosities, and is upgradeable to 1034 cm-2 sec-1 using bunched beam electron cooling of the hadron beam. The baseline luminosities are achievable using existing technologies and beam parameters that have been routinely achieved at RHIC in hadron-hadron collisions or elsewhere in e+e collisions. This minimizes the risk associated with the challenging luminosity goal and is keeping the technical risk of the e-RHIC electron-ion collider low. The latest design status will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOB56  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOB57 The Role of Adami Information in Beam Cooling 619
 
  • V.H. Ranjbar
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by the US Department of Energy under contract number DE-SC0012704
We re-consider stochastic cooling as type of information engine using the Adami definition of information *. We define information as data which can permit the cooling system to predict the individual trajectories better than purely random prediction and then act on that data to modify the trajectories of an ensemble of particles. In this study we track the flow of this type of information through the closed system and consider the limits based on sampling and correction as well as the role of the underlying model.
* Adami C. 2016 ‘‘What is information?'' Phil. Trans. R. Soc. A 374:20150230.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOB57  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEA2IO01 Calculating Spin Lifetime 667
 
  • V.H. Ranjbar
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by the US Department of Energy under contract number DE-SC0012704.
We have extended a lattice independent code to integrate the Thomas-BMT equation over 2 hours of beam time in the presence of two orthogonal Siberian snakes. In tandem to this we have recast the Thomas-BMT equation in the presences of longitudinal dynamics, into the parametric resonance formalism recently developed to understand overlapping spin resonances *
* V. H. Ranjbar, "Approximations for crossing two nearby spin
resonances," Phys. Rev. ST Accel. Beams 18, no. 1, 014001
(2015). doi:10.1103/PhysRevSTAB.18.014001
 
slides icon Slides WEA2IO01 [2.252 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEA2IO01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)