Author: Pellico, W.
Paper Title Page
MOPOB28 Progress on the Design of a Perpendicularly Biased 2nd Harmonic Cavity for the Fermilab Booster 130
 
  • R.L. Madrak, J.E. Dey, K.L. Duel, J. Kuharik, W. Pellico, J. Reid, G.V. Romanov, M. Slabaugh, D. Sun, C.-Y. Tan, I. Terechkine
    Fermilab, Batavia, Illinois, USA
 
  A perpendicular biased 2nd harmonic cavity is being designed and built for the Fermilab Booster. Its purpose is to flatten the bucket at injection and thus change the longitudinal beam distribution to decrease space charge effects. It can also help with transition crossing. The cavity frequency range is 76 - 106 MHz. It is modeled using CST microwave studio and COMSOL. The power amplifier will use the same tetrode as is used for the fundamental mode cavities in the Fermilab Booster (Y567B). We discuss recent progress on the cavity design, plans for testing the tuner's garnet material, and tests of the power source.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOPOB28  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOB29 Measurements of the Properties of Garnet Material for Tuning a 2nd Harmonic Cavity for the Fermilab Booster 134
 
  • R.L. Madrak, W. Pellico, G.V. Romanov, C.-Y. Tan, I. Terechkine
    Fermilab, Batavia, Illinois, USA
 
  A perpendicular biased 2nd harmonic cavity is being designed and built for the Fermilab Booster, to help with injection and transition. The frequency range is 76 - 106 MHz. The garnet material chosen for the tuner is AL800. To reliably model the cavity, its static permeability and loss tangent must be well known. We present our measurements of these properties.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOPOB29  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOA17 A Longitudinal Digital Mode Damper System for the Fermilab Booster 320
 
  • N. Eddy, W. Pellico, A. Semenov, D.C. Voy, A.M. Waller
    Fermilab, Batavia, Illinois, USA
 
  Funding: This work was supported by the U.S. Department of Energy under contract No. DE-AC02-07CH11359.
The Fermilab Booster accelerates bunches and accelerates proton beams from 400 MeV to 8 GeV. During the acceleration the Radio Frequency (RF) cavities are swept from 38MHz to 52.8MHz and requires crossing through transition where accelerating phase is shifted 90 degrees. In order to keep the beam stable and minimize losses and emittance growth a longitudinal damping system is required. This has traditionally been done by dedicated analog electronics designed to operate on specific beam modes for frequencies of instabilities. A complete digital implementation has been developed for this same purpose. The new digital system features and performance are detailed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOA17  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOA18 Experimental Studies of Beam Collimation System in the Fermilab Booster 732
 
  • V.V. Kapin, S. Chaurize, N.V. Mokhov, W. Pellico, M. Slabaugh, T. Sullivan, R. Tesarek, A.K. Triplett
    Fermilab, Batavia, Illinois, USA
 
  A two-stage collimation (2SC) system was installed in Fermilab Booster around 2004 and consists of 2 primary collimators (PrC), one for each of the horizontal and vertical planes and 3 secondary collimators (SC) each capable of acting in both planes. Presently, only SC are used as the single-stage collimation (1SC). Part of the Fermilab Proton Improvement Plan (PIP) includes a task to test 2SC for Booster operations. In this paper we describe preparatory steps to fix SC motion issues and installation of a 380μm thick aluminum foil PrC and post-processing software for beam orbit and beam loss measurements. The initial experimental results for 2SC in the vertical plane are also presented. The tuning of 2SC system was performed using fast loss monitors allowing much higher time-resolution than existing BLMs. Analysis of losses and beam transmission efficiency allow for the comparison of 1SC and 2SC schemes.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOA18  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)