Author: Macridin, A.
Paper Title Page
WEA4CO03 Intrinsic Landau Damping of Space Charge Modes at Coupling Resonance 863
 
  • A. Macridin, J.F. Amundson, A.V. Burov, P. Spentzouris, E.G. Stern
    Fermilab, Batavia, Illinois, USA
 
  Funding: This work was performed at Fermilab, operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.
Using Synergia accelerator modeling package and Dynamic Mode Decomposition technique, the properties of the first transverse dipole mode in Gaussian bunches with space charge are compared at transverse coupling resonance and off-resonance. The Landau damping at coupling resonance and in the strong space charge regime is a factor of two larger, while the mode's tune and shape are nearly the same. While the damping mechanism in the off-resonance case fits well with the classical Landau damping paradigm, the enhancement at coupling resonance is due to a higher order mode-particle coupling term which is modulated by the amplitude oscillation of the resonance trapped particles.
 
slides icon Slides WEA4CO03 [3.422 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEA4CO03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)