Author: Lishilin, O.
Paper Title Page
TUA3CO03 Compact Ring-Based X-Ray Source With on-Orbit and on-Energy Laser-Plasma Injection 435
 
  • M. Turner
    CERN, Geneva, Switzerland
  • J.R. Cheatam, A.L. Edelen
    CSU, Fort Collins, Colorado, USA
  • J. Gerity
    Texas A&M University, College Station, USA
  • A. Lajoie, C.Y. Wong
    NSCL, East Lansing, Michigan, USA
  • G. Lawler
    UCLA, Los Angeles, California, USA
  • O. Lishilin
    DESY Zeuthen, Zeuthen, Germany
  • K. Moon
    UNIST, Ulsan, Republic of Korea
  • A. A. Sahai, A. Seryi
    JAI, Oxford, United Kingdom
  • K. Shih
    SBU, Stony Brook, New York, USA
  • B. Zerbe
    MSU, East Lansing, Michigan, USA
 
  Funding: We acknowledge the stimulating atmosphere and support of US Particle Accelerator School, class of June 2016, where this design study was performed.
We report here the results of a one week long investigation into the conceptual design of an X-ray source based on a compact ring with on-orbit and on-energy laser-plasma accelerator (mini-project 10.4 from [1]). We performed these studies during the June 2016 USPAS class "Physics of Accelerators, Lasers, and Plasma…" applying the art of inventiveness TRIZ. We describe three versions of the light source with the constraints of the electron beam with energy 1 GeV or 3 GeV and a magnetic lattice design being normal conducting (only for the 1 GeV beam) or superconducting (for either beam). The electron beam recirculates in the ring, to increase the effective photon flux. We describe the design choices, present relevant parameters, and describe insights into such machines.
[1] Unifying physics of accelerators, lasers and plasma, A. Seryi, CRC Press, 2015.
 
slides icon Slides TUA3CO03 [8.411 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUA3CO03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)