Author: Khabiboulline, T.N.
Paper Title Page
MOPOB16 Higher Order Modes Analysis of Fermilab's Recycler Cavity 106
 
  • M.H. Awida, J.E. Dey, T.N. Khabiboulline, V.A. Lebedev, R.L. Madrak
    Fermilab, Batavia, Illinois, USA
 
  Funding: Operated by Fermi Research Alliance, LLC, under Contract DE-AC02-07CH11359 with the U.S. DOE
Two recycler cavities are being employed in Fermilab's Recycler Ring for the purpose of slip stacking proton bunches, where 6 batches of 8 GeV protons coming from the Booster are stacked on top of 6 circulating batches. Slip stacking requires two RF cavities operating at 52.809 and 51.545 MHz. In this paper, we report on the analysis of higher order modes in the Recycler cavity, presenting the values for R/Q and shunt impedances. Knowing the frequencies and properties of higher order modes is particularly critical for beam physics and avoidance of beam instabilities.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOPOB16  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOB33 LCLS-II Tuner Assembly for the Prototype Cryomodule at FNAL 143
 
  • Y.M. Pischalnikov, E. Borissov, T.N. Khabiboulline, J.C. Yun
    Fermilab, Batavia, Illinois, USA
 
  The tuner design for LCLS-II has been thoroughly verified and fabricated for used in the LCLS-II prototype modules. This paper will present the lessons learned during the installation of these tuners for the prototype modules at FNAL, including installation procedures, best practices, and challenges encountered.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOPOB33  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOA42 RF Design of a 1.3-GHz High Average Beam Power SRF Electron Source 789
SUPO42   use link to see paper's listing under its alternate paper code  
 
  • N. Sipahi, S. Biedron, S.V. Milton
    CSU, Fort Collins, Colorado, USA
  • I.V. Gonin, R.D. Kephart, T.N. Khabiboulline, N. Solyak, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
 
  There is a significant interest in developing high-average power electron sources, particularly those integrated with Superconducting Radio Frequency (SRF) accelerator systems. Even though there are examples of high-average-power electron sources, they are not compact, highly efficient, or available at a reasonable cost. Adapting the recent advances in SRF cavities, RF power sources, and innovative solutions for an SRF gun and cathode system, we have developed a design concept for a compact SRF high-average power electron linac. This design will produce electron beams with energies up to 10 MeV. In this paper, we present the design results of our cathode structure integrated with modified 9-cell accelerating structure.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOA42  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEB3CO03 650 MHz Elliptical Superconducting RF Cavities for PIP-II Project 859
 
  • V. Jain, E. Borissov, I.V. Gonin, C.J. Grimm, S. Kazakov, T.N. Khabiboulline, V.A. Lebedev, C.S. Mishra, D.V. Mitchell, T.H. Nicol, Y.M. Pischalnikov, A.M. Rowe, N.K. Sharma, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
 
  Funding: Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.
Proton Improvement Plan-II at Fermilab is an 800 MeV superconducting pulsed linac which is also capable of running in CW mode. The high energy section operates from 185 MeV to 800 MeV instigated using 650 MHz elliptical cavities. The low-beta (LB) βG =0.61 portion will accelerate protons from 185 MeV-500 MeV, while the high-beta (HB) βG = 0.92 portion of the linac will acceler-ate from 500 to 800 MeV. The development of both LB and HB cavities is taking place under the umbrella of the Indian Institutions Fermilab Collaboration (IIFC). This paper presents the design methodology adopted for both low-beta and high-beta cavities starting from the RF design yielding mechanical dimensions of the cavity cells and, then moving to the workable dressed cavity design. Designs of end groups (main coupler side and field probe side), helium vessel, coupler, and tuner are the same for both cavities everywhere where it is possible. The design, analysis and integration of dressed cavity are presented in detail.
 
slides icon Slides WEB3CO03 [11.396 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEB3CO03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOB27 Modification of 3rd Harmonic Cavity for CW Operation in LCLS-II Accelerator 960
 
  • T.N. Khabiboulline, M.H. Awida, I.V. Gonin, A. Lunin, N. Solyak, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
 
  A 3.9 GHz 3rd harmonic cavity was developed at FNAL and it is currently used in the FLASH accelerator at DESY in order to improve FEL operation. The European XFEL accelerator in Hamburg also adapted the same cavity design for a pulsed linac operation. The 3rd harmonic cavity for the LCLS-II accelerator at SLAC will operate in a continuous wave (CW) regime. A CW operation and a high average current in the LCLS-II linac result in in-creased heat loads to main and HOM couplers of the cavity. Several cavity design modifications were pro-posed and investigated for improving a cavity perfor-mance in the CW regime. In this paper we present results of the design review for proposed modifications  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOB27  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA21 Multipacting in HOM Coupler of LCLS-II 1.3 GHz SC Cavity 1146
 
  • G.V. Romanov, T.N. Khabiboulline, A. Lunin
    Fermilab, Batavia, Illinois, USA
 
  During high power tests of the 1.3 GHz LCLS-2 cavity on the test stand at Fermilab an anomalous rise of temperature of the pickup antenna in the higher order mode (HOM) coupler was detected in accelerating gradient range of 5-10 MV/m. It was suggested that the multipacting in the HOM coupler may be a cause of this temperature rise. In this work the suggestion was studied, and the conditions and the location, where multipacting can develop, were found.  
poster icon Poster THPOA21 [4.786 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA21  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)